Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Med ; 22(1): 42, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281914

RESUMEN

BACKGROUND: Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systematically investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA. METHODS: We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were analyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients with advanced CCA. RESULTS: Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a significantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiving PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy. CONCLUSIONS: MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H and positive PD-L1 expression were associated with improved both OS and PFS. TRIAL REGISTRATION: This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Inestabilidad de Microsatélites , Antígeno B7-H1/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Mutación , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos/metabolismo , Inmunoterapia , Genómica , Biomarcadores de Tumor/genética
2.
Bioorg Chem ; 141: 106898, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801783

RESUMEN

Seven novel isocoumarins, prunolactones A-G (1-7), featuring an unusual 6/6/6/6/6 spiropentacyclic skeleton, together with two biosynthetic precursors phomopsilactone (8) and methyl 3-epi-shikimate (9), were isolated from the endophytic fungus Phomopsis prunorum guided by UPLC-QTOF-MS and 1H NMR spectroscopic analytical techniques. Their structures including absolute configurations of 1-7 were elucidated based on extensive spectroscopic data, X-ray diffraction analysis, and ECD calculations. Biogenetically, compounds 1-7 are proposed to be derived from polyketide and shikimate pathways via key intermolecular Diels - Alder reactions. Compounds 2, 3, and 7 showed significant in vivo proangiogenic activity in transgenic zebrafish.


Asunto(s)
Isocumarinas , Pez Cebra , Animales , Hongos/metabolismo , Isocumarinas/farmacología , Isocumarinas/química , Estructura Molecular , Esqueleto/metabolismo , Pez Cebra/metabolismo
3.
Med Sci Monit ; 29: e943586, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145290

RESUMEN

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Mei Mei Guan, Qun Xian Rao, Miao Ling Huang, Li Juan Wang, Shao Dan Lin, Qing Chen, Chang Hao Liu. Long Noncoding RNA TP73-AS1 Targets MicroRNA-329-3p to Regulate Expression of the SMAD2 Gene in Human Cervical Cancer Tissue and Cell Lines. Med Sci Monit, 2019; 25: 8131-8141. DOI: 10.12659/MSM.916292.

4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046988

RESUMEN

During the growth period of rapeseed, if there is continuous rainfall, it will easily lead to waterlogging stress, which will seriously affect the growth of rapeseed. Currently, the mechanisms of rapeseed resistance to waterlogging stress are largely unknown. In this study, the rapeseed (Brassica napus) inbred lines G230 and G218 were identified as waterlogging-tolerant rapeseed and waterlogging-sensitive rapeseed, respectively, through a potted waterlogging stress simulation and field waterlogging stress experiments. After six days of waterlogging stress at the seedling stage, the degree of leaf aging and root damage of the waterlogging-tolerant rapeseed G230 were lower than those of the waterlogging-sensitive rapeseed G218. A physiological analysis showed that waterlogging stress significantly increased the contents of malondialdehyde, soluble sugar, and hydrogen peroxide in rape leaves and roots. The transcriptomic and metabolomic analysis showed that the differential genes and the differential metabolites of waterlogging-tolerant rapeseed G230 were mainly enriched in the metabolic pathways, biosynthesis of secondary metabolites, flavonoid biosynthesis, and vitamin B6 metabolism. Compared to G218, the expression levels of some genes associated with flavonoid biosynthesis and vitamin B metabolism were higher in G230, such as CHI, DRF, LDOX, PDX1.1, and PDX2. Furthermore, some metabolites involved in flavonoid biosynthesis and vitamin B6 metabolism, such as naringenin and epiafzelechin, were significantly up-regulated in leaves of G230, while pyridoxine phosphate was only significantly down-regulated in roots and leaves of G218. Furthermore, foliar spraying of vitamin B6 can effectively improve the tolerance to waterlogging of G218 in the short term. These results indicate that flavonoid biosynthesis and vitamin B6 metabolism pathways play a key role in the waterlogging tolerance and hypoxia stress resistance of Brassica napus and provide new insights for improving the waterlogging tolerance and cultivating waterlogging-tolerant rapeseed varieties.


Asunto(s)
Brassica napus , Brassica rapa , Transcriptoma , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Brassica rapa/genética , Metaboloma , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
5.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047249

RESUMEN

A high oleic acid content is considered an essential characteristic in the breeding of high-quality rapeseed in China. Long-chain non-coding RNA (lncRNA) molecules play an important role in the plant's growth and its response to stress. To better understand the role of lncRNAs in regulating plant reproductive development, we analyzed whole-transcriptome and physiological data to characterize the dynamic changes in lncRNA expression during the four representative times of seed development of high- and low-oleic-acid rapeseed in three regions. We identified 21 and 14 lncRNA and mRNA modules, respectively. These modules were divided into three types related to region, development stages, and material. Next, we analyzed the key modules related to the oil content and the oleic acid, linoleic acid, and linolenic acid contents with physiological data and constructed the key functional network analysis on this basis. Genes related to lipid metabolism, such as 3-ketoacyl-CoA synthase 16 (KCS16) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), were present in the co-expression network, suggesting that the effect of these genes on lipid metabolism might be embodied by the expression of these lncRNAs. Our results provide a fresh insight into region-, development-stage-, and material-biased changes in lncRNA expression in the seeds of Brassica napus. Some of these lncRNAs may participate in the regulatory network of lipid accumulation and metabolism, together with regulated genes. These results may help elucidate the regulatory system of lncRNAs in the lipid metabolism of high-oleic-acid rapeseed seeds.


Asunto(s)
Brassica napus , Brassica rapa , ARN Largo no Codificante , Brassica napus/genética , Brassica napus/metabolismo , Ácido Oléico/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Aceites de Plantas/metabolismo , Metabolismo de los Lípidos/genética , Fitomejoramiento , Brassica rapa/genética , Brassica rapa/metabolismo , Semillas/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047446

RESUMEN

The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3'H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fitomejoramiento , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Color
7.
Mol Breed ; 42(11): 69, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37313473

RESUMEN

Plant height is a key morphological trait in rapeseed, which not only plays an important role in determining plant architecture, but is also an important characteristic related to yield. Presently, the improvement of plant architecture is a major challenge in rapeseed breeding. This work was carried out to identify genetic loci related to plant height in rapeseed. In this study, a genome-wide association study (GWAS) of plant height was performed using a Brassica 60 K Illumina Infinium SNP array and 203 Brassica napus accessions. Eleven haplotypes containing important candidate genes were detected and significantly associated with plant height on chromosomes A02, A03, A05, A07, A08, C03, C06, and C09. Moreover, regional association analysis of 50 resequenced rapeseed inbred lines was used to further analyze these eleven haplotypes and revealed nucleotide variation in the BnFBR12-A08 and BnCCR1-C03 gene regions related to the phenotypic variation in plant height. Furthermore, coexpression network analysis showed that BnFBR12-A08 and BnCCR1-C03 were directly connected with hormone genes and transcription factors and formed a potential network regulating the plant height of rapeseed. Our results will aid in the development of haplotype functional markers to further improve plant height in rapeseed. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01337-1.

8.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216116

RESUMEN

1258A is a new line of B.napus with Nsa cytoplasmic male sterility (CMS) with potential applications in hybrid rapeseed breeding. Sterile cytoplasm was obtained from XinJiang Sinapis arvensis through distant hybridization and then backcrossed with 1258B for many generations. However, the characteristics and molecular mechanisms underlying pollen abortion in this sterile line are poorly understood. In this study, a cytological analysis revealed normal microsporogenesis and uninucleate pollen grain formation. Pollen abortion was due to non-programmed cell death in the tapetum and the inability of microspores to develop into mature pollen grains. Sucrose, soluble sugar, and adenosine triphosphate (ATP) contents during microspore development were lower than those of the maintainer line, along with an insufficient energy supply, reduced antioxidant enzyme activity, and substantial malondialdehyde (MDA) accumulation in the anthers. Transcriptome analysis revealed that genes involved in secondary metabolite biosynthesis, glutathione metabolism, phenylpropane biosynthesis, cyanoamino acid metabolism, starch and sucrose metabolism, and glycerolipid metabolism may contribute to pollen abortion. The down regulation of nine cytochrome P450 monooxygenases genes were closely associated with pollen abortion. These results suggest that pollen abortion in 1258A CMS stems from abnormalities in the chorioallantoic membranes, energy deficiencies, and dysfunctional antioxidant systems in the anthers. Our results provide insight into the molecular mechanism underlying pollen abortion in Nsa CMS and provide a theoretical basis for better heterosis utilization in B.napus.


Asunto(s)
Brassica napus/genética , Citoplasma/genética , Hibridación Genética/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Citosol/fisiología , Flores/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Fitomejoramiento/métodos , Infertilidad Vegetal/genética , Polen/genética , Almidón/genética
9.
Cancer ; 127(21): 3975-3984, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355801

RESUMEN

BACKGROUND: Several clinical studies of vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) therapy as a second-line treatment for biliary tract cancer (BTC) have shown modest efficacy. In this study, surufatinib was evaluated as a second-line VEGFR therapy in patients with BTC. METHODS: This was a single-arm, multicenter, open-label phase 2 study conducted in China. The study enrolled eligible patients with BTC, who had received surufatinib monotherapy as second-line treatment, at a dose of 300 mg, once daily, in 28-day cycles. Tumor assessments were performed every 8 weeks (±7 days) according to the Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS: As of November 30, 2018, 39 patients with BTC, including 29 (74.4%) with intrahepatic cholangiocarcinoma, 5 (12.8%) with extrahepatic cholangiocarcinoma, and 5 (12.8%) with gallbladder cancer, were enrolled and treated with surufatinib. The 16-week progression-free survival rate was 46.33% (95% CI, 24.38-65.73), with median progression-free survival of 3.7 months and median overall survival of 6.9 months. In addition, results from subgroup and post hoc analyses revealed that patients with the proper tumor locations or appropriate levels of serum biomarkers might receive greater clinical benefits. The top 3 treatment-related adverse events with severity of grade ≥3 included blood bilirubin increased (20.5%), hypertension (17.9%), and proteinuria (12.8%). CONCLUSIONS: When applied in the treatment of patients with BTC, surufatinib monotherapy has offered moderate clinical efficacy and shown expected tolerability and safety profiles.


Asunto(s)
Neoplasias del Sistema Biliar , Factor A de Crecimiento Endotelial Vascular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Sistema Biliar/patología , Humanos , Indoles , Pirimidinas/uso terapéutico , Sulfonamidas/uso terapéutico
10.
BMC Cancer ; 21(1): 845, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294055

RESUMEN

BACKGROUND: The understanding of molecular changes in mCRC during treatment could be used to personalise therapeutic strategies. The aim of our study was to explore the association of circulating tumour DNA (ctDNA) with clinical outcome in metastatic colorectal cancer (mCRC). METHODS: Sequential patients with mCRC receiving standard first-line chemotherapy were included prospectively. Both plasma ctDNA and serum CEA were assessed in samples obtained before treatment and after 4 cycles of chemotherapy (C4). Computed tomography (CT) scans were carried out at baseline and post-C4 (8-10 weeks) and were assessed using Response Evaluation Criteria In Solid Tumours version 1.1 (RECIST v1.1). Target-capture deep sequencing with a panel covering 1021 genes was performed to detected somatic mutations in ctDNA. RESULTS: A total of 20 patients were prospectively included and treated with either leucovorin, fluorouracil, and oxaliplatin (FOLFOX) (15/20) or leucovorin, fluorouracil, and irinotecan (FOLFIRI) (5/20). Median follow-up was 6.9 months (range 1.6-26.6). Somatic mutations for baseline ctDNA analysis were identified in 85% (17/20) of the patients. Mutation variations of ctDNA after chemotherapy were tested in 16/20 (80.0%) of the patients. In multivariate analyses, a high baseline molecular tumour burden index (mTBI) in ctDNA was associated with a higher risk of disease progression, as well as emergence of new mutations in ctDNA during chemotherapy. Patients with newly detected mutations had shorter progression-free survival (PFS) compared to those without (median 3.0 versus 7.3 months; hazard ratio (HR), 5.97; 95% confidence interval (CI), 0.70-50.69; P = 0.0003). Fold changes in mTBI from baseline to post-C4 were obtained in 80.0% (16/20) of the patients, which were also related to PFS. Patients with fold reduction in mTBI above 0.8-fold had longer PFS compared to those below (median 9.3 versus 4.1 months; HR, 4.51; 95% CI, 1.29-15.70; P = 0.0008). CONCLUSIONS: Newly detected mutations in ctDNA during treatment might potentially be associated with clinical outcome in mCRC and may provide important clinical information.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Mutación , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA