Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Curr Biol ; 32(21): 4631-4644.e5, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36182701

RESUMEN

In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles. In contrast to the adult, the C. elegans motor circuit at the juvenile larval stage has asymmetric wiring between motor neurons and muscles but still generates adult-like bending waves with dorsal-ventral symmetry. We show that in the juvenile circuit, wiring between excitatory and inhibitory motor neurons coordinates the contraction of dorsal muscles with relaxation of ventral muscles, producing dorsal bends. However, ventral bending is not driven by analogous wiring. Instead, ventral muscles are excited uniformly by premotor interneurons through extrasynaptic signaling. Ventral bends occur in anti-phasic entrainment to activity of the same motor neurons that drive dorsal bends. During maturation, the juvenile motor circuit is replaced by two motor subcircuits that separately drive dorsal and ventral bending. Modeling reveals that the juvenile's immature motor circuit is an adequate solution to generate adult-like dorsal-ventral bending before the animal matures. Developmental rewiring between functionally degenerate circuit solutions, which both generate symmetric bending patterns, minimizes behavioral disruption across maturation.


Asunto(s)
Caenorhabditis elegans , Neuronas Motoras , Animales , Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Larva/fisiología
2.
Elife ; 72018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29360037

RESUMEN

Coordinated rhythmic movements are ubiquitous in animal behavior. In many organisms, chains of neural oscillators underlie the generation of these rhythms. In C. elegans, locomotor wave generation has been poorly understood; in particular, it is unclear where in the circuit rhythms are generated, and whether there exists more than one such generator. We used optogenetic and ablation experiments to probe the nature of rhythm generation in the locomotor circuit. We found that multiple sections of forward locomotor circuitry are capable of independently generating rhythms. By perturbing different components of the motor circuit, we localize the source of secondary rhythms to cholinergic motor neurons in the midbody. Using rhythmic optogenetic perturbation, we demonstrate bidirectional entrainment of oscillations between different body regions. These results show that, as in many other vertebrates and invertebrates, the C. elegans motor circuit contains multiple oscillators that coordinate activity to generate behavior.


Asunto(s)
Caenorhabditis elegans/fisiología , Locomoción , Periodicidad , Técnicas de Ablación , Animales , Relojes Biológicos , Neuronas Colinérgicas/fisiología , Neuronas Motoras/fisiología , Optogenética
3.
Elife ; 72018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29360035

RESUMEN

Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network.


Asunto(s)
Relojes Biológicos , Caenorhabditis elegans/fisiología , Locomoción , Neuronas Motoras/fisiología , Periodicidad , Animales , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA