Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(21): e2301287120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186865

RESUMEN

We investigate signal propagation in a quantum field simulator of the Klein-Gordon model realized by two strongly coupled parallel one-dimensional quasi-condensates. By measuring local phononic fields after a quench, we observe the propagation of correlations along sharp light-cone fronts. If the local atomic density is inhomogeneous, these propagation fronts are curved. For sharp edges, the propagation fronts are reflected at the system's boundaries. By extracting the space-dependent variation of the front velocity from the data, we find agreement with theoretical predictions based on curved geodesics of an inhomogeneous metric. This work extends the range of quantum simulations of nonequilibrium field dynamics in general space-time metrics.

2.
Phys Rev Lett ; 127(12): 129901, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597117

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.121.070401.

3.
Phys Rev Lett ; 126(21): 210603, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114847

RESUMEN

Thermodynamic uncertainty relations express a trade-off between precision, defined as the noise-to-signal ratio of a generic current, and the amount of associated entropy production. These results have deep consequences for autonomous heat engines operating at steady state, imposing an upper bound for their efficiency in terms of the power yield and its fluctuations. In the present Letter we analyze a different class of heat engines, namely, those which are operating in the periodic slow-driving regime. We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines: it allows for engines that produce finite power, with small power fluctuations, to operate close to reversibility. The bound further incorporates the effect of quantum fluctuations, which reduces engine efficiency relative to the average power and reliability. We finally illustrate our findings in the experimentally relevant model of a single-ion heat engine.

4.
Phys Rev Lett ; 125(16): 160602, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124861

RESUMEN

Information is physical but information is also processed in finite time. Where computing protocols are concerned, finite-time processing in the quantum regime can dynamically generate coherence. Here we show that this can have significant thermodynamic implications. We demonstrate that quantum coherence generated in the energy eigenbasis of a system undergoing a finite-time information erasure protocol yields rare events with extreme dissipation. These fluctuations are of purely quantum origin. By studying the full statistics of the dissipated heat in the slow-driving limit, we prove that coherence provides a non-negative contribution to all statistical cumulants. Using the simple and paradigmatic example of single bit erasure, we show that these extreme dissipation events yield distinct, experimentally distinguishable signatures.

5.
Phys Rev Lett ; 125(8): 080402, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909771

RESUMEN

The precise measurement of low temperatures is a challenging, important, and fundamental task for quantum science. In particular, in situ thermometry is highly desirable for cold atomic systems due to their potential for quantum simulation. Here, we demonstrate that the temperature of a noninteracting Fermi gas can be accurately inferred from the nonequilibrium dynamics of impurities immersed within it, using an interferometric protocol and established experimental methods. Adopting tools from the theory of quantum parameter estimation, we show that our proposed scheme achieves optimal precision in the relevant temperature regime for degenerate Fermi gases in current experiments. We also discover an intriguing trade-off between measurement time and thermometric precision that is controlled by the impurity-gas coupling, with weak coupling leading to the greatest sensitivities. This is explained as a consequence of the slow decoherence associated with the onset of the Anderson orthogonality catastrophe, which dominates the gas dynamics following its local interaction with the immersed impurity.

6.
Entropy (Basel) ; 22(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33286991

RESUMEN

The two-point measurement scheme for computing the thermodynamic work performed on a system requires it to be initially in equilibrium. The Margenau-Hill scheme, among others, extends the previous approach to allow for a non-equilibrium initial state. We establish a quantitative comparison between both schemes in terms of the amount of coherence present in the initial state of the system, as quantified by the l1-coherence measure. We show that the difference between the two first moments of work, the variances of work, and the average entropy production obtained in both schemes can be cast in terms of such initial coherence. Moreover, we prove that the average entropy production can take negative values in the Margenau-Hill framework.

7.
Phys Rev Lett ; 123(9): 090604, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524493

RESUMEN

Thermodynamic uncertainty relations (TURs) place strict bounds on the fluctuations of thermodynamic quantities in terms of the associated entropy production. In this Letter, we identify the tightest (and saturable) matrix-valued TUR that can be derived from the exchange fluctuation theorems describing the statistics of heat and particle flow between multiple systems of arbitrary dimensions. Our result holds for both quantum and classical systems, undergoing general finite-time nonstationary processes. Moreover, it provides bounds not only for the variances, but also for the correlations between thermodynamic quantities. To demonstrate the relevance of TURs to the design of nanoscale machines, we consider the operation of a 2-qubit swap engine undergoing an Otto cycle and show how our results can be used to place strict bounds on the correlations between heat and work.

8.
Phys Rev Lett ; 121(7): 070401, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169063

RESUMEN

We identify sufficient conditions on the structure of the interaction Hamiltonian between a two-level quantum system and a thermal bath that, without any external drive or coherent measurement, guarantee the generation of steady-state coherences (SSC). The SSC obtained this way, remarkably, turn out to be independent of the initial state of the system, which could therefore be taken as initially incoherent. We characterize in detail this phenomenon, first analytically in the weak coupling regime for two paradigmatic models, and then numerically in more complex systems without any assumption on the coupling strength. In all of these cases, we find that SSC become increasingly significant as the bath is cooled down. These results can be directly verified in many experimental platforms.

9.
Phys Rev E ; 108(5-1): 054126, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115447

RESUMEN

Thermodynamic uncertainty relations (TURs) express a fundamental lower bound on the precision (inverse scaled variance) of any thermodynamic charge-e.g., work or heat-by functionals of the average entropy production. Relying on purely variational arguments, we significantly extend TUR inequalities by incorporating and analyzing the impact of higher statistical cumulants of the entropy production itself within the general framework of time-symmetrically-controlled computation. We derive an exact expression for the charge that achieves the minimum scaled variance, for which the TUR bound tightens to an equality that we name the thermodynamic uncertainty theorem (TUT). Importantly, both the minimum scaled variance charge and the TUT are functionals of the stochastic entropy production, thus retaining the impact of its higher moments. In particular, our results show that, beyond the average, the entropy production distribution's higher moments have a significant effect on any charge's precision. This is made explicit via a thorough numerical analysis of "swap" and "reset" computations that quantitatively compares the TUT against previous generalized TURs.

10.
Phys Rev E ; 103(1-1): 012133, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601640

RESUMEN

Fluctuations strongly affect the dynamics and functionality of nanoscale thermal machines. Recent developments in stochastic thermodynamics have shown that fluctuations in many far-from-equilibrium systems are constrained by the rate of entropy production via so-called thermodynamic uncertainty relations. These relations imply that increasing the reliability or precision of an engine's power output comes at a greater thermodynamic cost. Here we study the thermodynamics of precision for small thermal machines in the quantum regime. In particular, we derive exact relations between the power, power fluctuations, and entropy production rate for several models of few-qubit engines (both autonomous and cyclic) that perform work on a quantized load. Depending on the context, we find that quantum coherence can either help or hinder where power fluctuations are concerned. We discuss design principles for reducing such fluctuations in quantum nanomachines and propose an autonomous three-qubit engine whose power output for a given entropy production is more reliable than would be allowed by any classical Markovian model.

11.
Phys Rev E ; 103(5-1): 052138, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34134351

RESUMEN

In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy, respectively, when a system is driven out of equilibrium. For quantum systems, these quantities can be identified at the stochastic level by unravelling the system's evolution in terms of quantum jump trajectories. We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems, whose instantaneous steady states are of Gibbs form. If the driven system remains close to the instantaneous Gibbs state at all times, then we show that the corresponding two-variable cumulant generating function implies a joint detailed fluctuation theorem so long as detailed balance is satisfied. As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady states, and for systems that violate detailed balance. This FDR contains a term arising from genuinely quantum fluctuations, and extends an analogous relation from classical thermodynamics to the quantum regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA