Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 230(2): 258.e1-258.e11, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37544351

RESUMEN

BACKGROUND: Down syndrome is associated with several comorbidities, including intellectual disability, growth restriction, and congenital heart defects. The prevalence of Down syndrome-associated comorbidities is highly variable, and intellectual disability, although fully penetrant, ranges from mild to severe. Understanding the basis of this interindividual variability might identify predictive biomarkers of in utero and postnatal outcomes that could be used as endpoints to test the efficacy of future therapeutic interventions. OBJECTIVE: The main objective of this study was to examine if antenatal interindividual variability exists in mouse models of Down syndrome and whether applying statistical approaches to clinically relevant measurements (ie, the weights of the embryo, placenta, and brain) could define cutoffs that discriminate between subgroups of trisomic embryos. STUDY DESIGN: Three commonly used mouse models of Down syndrome (Dp(16)1/Yey, Ts65Dn, and Ts1Cje) and a new model (Ts66Yah) were used in this study. Trisomic and euploid littermate embryos were used from each model with total numbers of 102 for Ts66Yah, 118 for Dp(16)1/Yey, 92 for Ts65Dn, and 126 for Ts1Cje. Placental, embryonic, and brain weights and volumes at embryonic day 18.5 were compared between genotypes in each model. K-mean clustering analysis was applied to embryonic and brain weights to identify severity classes in trisomic embryos, and brain and placental volumetric measurements were compared between genotypes and classes for each strain. In addition, Ts66Yah embryos were examined for malformations because embryonic phenotypes have never been examined in this model. RESULTS: Reduced body and brain weights were present in Ts66Yah, Dp(16)1/Yey, and Ts65Dn embyos. Cluster analysis identified 2 severity classes in trisomic embryos-mild and severe-in all 4 models that were distinguishable using a putative embryonic weight cutoff of <0.5 standard deviation below the mean. Ts66Yah trisomic embryos develop congenital anomalies that are also found in humans with Down syndrome, including congenital heart defects and renal pelvis dilation. CONCLUSION: Statistical approaches applied to clinically relevant measurements revealed 2 classes of phenotypic severity in trisomic mouse models of Down syndrome. Analysis of severely affected trisomic animals may facilitate the identification of biomarkers and endpoints that can be used to prenatally predict outcomes and the efficacy of treatments.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Discapacidad Intelectual , Animales , Ratones , Femenino , Humanos , Embarazo , Síndrome de Down/genética , Placenta , Fenotipo , Cardiopatías Congénitas/genética , Biomarcadores , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Am J Hum Genet ; 107(5): 911-931, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33098770

RESUMEN

Human fetuses with trisomy 21 (T21) have atypical brain development that is apparent sonographically in the second trimester. We hypothesize that by analyzing and integrating dysregulated gene expression and pathways common to humans with Down syndrome (DS) and mouse models we can discover novel targets for prenatal therapy. Here, we tested the safety and efficacy of apigenin, identified with this approach, in both human amniocytes from fetuses with T21 and in the Ts1Cje mouse model. In vitro, T21 cells cultured with apigenin had significantly reduced oxidative stress and improved antioxidant defense response. In vivo, apigenin treatment mixed with chow was administered prenatally to the dams and fed to the pups over their lifetimes. There was no significant increase in birth defects or pup deaths resulting from prenatal apigenin treatment. Apigenin significantly improved several developmental milestones and spatial olfactory memory in Ts1Cje neonates. In addition, we noted sex-specific effects on exploratory behavior and long-term hippocampal memory in adult mice, and males showed significantly more improvement than females. We demonstrated that the therapeutic effects of apigenin are pleiotropic, resulting in decreased oxidative stress, activation of pro-proliferative and pro-neurogenic genes (KI67, Nestin, Sox2, and PAX6), reduction of the pro-inflammatory cytokines INFG, IL1A, and IL12P70 through the inhibition of NFκB signaling, increase of the anti-inflammatory cytokines IL10 and IL12P40, and increased expression of the angiogenic and neurotrophic factors VEGFA and IL7. These studies provide proof of principle that apigenin has multiple therapeutic targets in preclinical models of DS.


Asunto(s)
Apigenina/farmacología , Síndrome de Down/tratamiento farmacológico , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Células Madre/efectos de los fármacos , Líquido Amniótico/citología , Líquido Amniótico/metabolismo , Animales , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/inmunología , Síndrome de Down/patología , Conducta Exploratoria/efectos de los fármacos , Femenino , Feto , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Interleucina-7/genética , Interleucina-7/inmunología , Antígeno Ki-67/genética , Antígeno Ki-67/inmunología , Masculino , Ratones , Nestina/genética , Nestina/inmunología , Neurogénesis/genética , Estrés Oxidativo/efectos de los fármacos , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/inmunología , Embarazo , Cultivo Primario de Células , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/inmunología , Factores Sexuales , Células Madre/metabolismo , Células Madre/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/inmunología
3.
J Neurosci Res ; 101(4): 492-507, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36602162

RESUMEN

Several non-verbal cognitive and behavioral tests have been developed to assess learning deficits in humans with Down syndrome (DS). Here we used rodent touchscreen paradigms in adult male mice to investigate visual discrimination (VD) learning and inhibitory control in the Dp(16)1/Yey (C57BL/6J genetic background), Ts65Dn (mixed B6 X C3H genetic background) and Ts1Cje (C57BL/6J genetic background) mouse models of DS. Dp(16)1/Yey and Ts1Cje models did not exhibit motivation or learning deficits during early pre-training, however, Ts1Cje mice showed a significant learning delay after the introduction of the incorrect stimulus (late pre-training), suggesting prefrontal cortex defects in this model. Dp(16)1/Yey and Ts1Cje mice display learning deficits in VD but these deficits were more pronounced in the Dp(16)1/Yey model. Both models also exhibited compulsive behavior and abnormal cortical inhibitory control during Extinction compared to WT littermates. Finally, Ts65Dn mice outperformed WT littermates in pre-training stages by initiating a significantly higher number of trials due to their hyperactive behavior. Both Ts65Dn and WT littermates showed poor performance during late pre-training and were not tested in VD. These studies demonstrate significant learning deficits and compulsive behavior in the Ts1Cje and Dp(16)1/Yey mouse models of DS. They also demonstrate that the mouse genetic background (C57BL/6J vs. mixed B6 X C3H) and the absence of hyperactive behavior are key determinants of successful learning in touchscreen behavioral testing. These data will be used to select the mouse model that best mimics cognitive deficits in humans with DS and evaluate the effects of future therapeutic interventions.


Asunto(s)
Síndrome de Down , Humanos , Masculino , Ratones , Animales , Síndrome de Down/genética , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/psicología , Proyectos Piloto , Fenotipo , Ratones Endogámicos C57BL , Ratones Endogámicos C3H , Modelos Animales de Enfermedad
4.
Am J Obstet Gynecol ; 225(3): 296.e1-296.e13, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33766516

RESUMEN

BACKGROUND: In human fetuses with Down syndrome, placental pathology, structural anomalies and growth restriction are present. There is currently a significant lack of information regarding the early life span in mouse models of Down syndrome. OBJECTIVE: The objective of this study was to examine embryonic day 18.5 and placental phenotype in the 3 most common mouse models of Down syndrome (Ts65Dn, Dp(16)1/Yey, Ts1Cje). Based on prenatal and placental phenotyping in 3 mouse models of Down syndrome, we hypothesized that one or more of them would have a similar phenotype to human fetuses with trisomy 21, which would make it the most suitable for in utero treatment studies. STUDY DESIGN: Here, C57BL6J/6 female mice were mated to Dp(16)1/Yey and Ts1Cje male mice and Ts65Dn female mice to C57BL/B6Eic3Sn.BLiAF1/J male mice. At embryonic day 18.5, dams were euthanized. Embryos and placentas were examined blindly for weight and size. Embryos were characterized as euploid or trisomic, male or female by polymerase chain reaction. A subset of embryos (34 euploid and 34 trisomic) were examined for malformations. RESULTS: The Ts65Dn mouse model showed the largest differences in fetal growth, brain development, and placental development when comparing euploid and trisomic embryos. For the Dp(16)1/Yey mouse model, genotype did not impact fetal growth, but there were differences in brain and placental development. For the Ts1Cje mouse model, no significant association was found between genotype and fetal growth, brain development, or placental development. Euploid mouse embryos had no congenital anomalies; however, 1 mouse embryo died. Hepatic necrosis was seen in 6 of 12 Dp(16)1/Yey (50%) and 1 of 12 Ts1Cje (8%) mouse embryos; hepatic congestion or inflammation was observed in 3 of 10 Ts65Dn mouse embryos (30%). Renal pelvis dilation was seen in 5 of 12 Dp(16)1/Yey (42%), 5 of 10 Ts65Dn (50%), and 3 of 12 Ts1Cje (25%) mouse embryos. In addition, 1 Ts65Dn mouse embryo and 1 Dp(16)1/Yey mouse embryo had an aortic outflow abnormality. Furthermore, 2 Ts1Cje mouse embryos had ventricular septal defects. Ts65Dn mouse placentas had increased spongiotrophoblast necrosis. CONCLUSION: Fetal and placental growth showed varying trends across strains. Congenital anomalies were primarily seen in trisomic embryos. The presence of liver abnormalities in all 3 mouse models of Down syndrome (10 of 34 cases) is a novel finding. Renal pelvis dilation was also common (13 of 34 cases). Future research will examine human autopsy material to determine if these findings are relevant to infants with Down syndrome. Differences in placental histology were also observed among strains.


Asunto(s)
Síndrome de Down/genética , Desarrollo Fetal , Placenta/patología , Placentación , Animales , Encéfalo/embriología , Encéfalo/patología , Dilatación Patológica , Modelos Animales de Enfermedad , Femenino , Genotipo , Defectos del Tabique Interventricular/patología , Inflamación/patología , Pelvis Renal/patología , Hígado/patología , Ratones Endogámicos C57BL , Necrosis , Tamaño de los Órganos , Fenotipo , Embarazo
5.
J Neurosci ; 36(10): 2926-44, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961948

RESUMEN

Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.


Asunto(s)
Encéfalo/anomalías , Encéfalo/patología , Anomalías Craneofaciales/etiología , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Síndrome de Down/genética , Trisomía/fisiopatología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/etiología , Embrión de Mamíferos , Conducta Exploratoria/fisiología , Femenino , Genotipo , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fuerza Muscular/genética , Nestina/genética , Nestina/metabolismo , Neurogénesis/genética , Memoria Espacial/fisiología , Trisomía/genética
6.
Am J Obstet Gynecol ; 214(5): 623.e1-623.e10, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26945603

RESUMEN

BACKGROUND: Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. OBJECTIVE: We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. STUDY DESIGN: Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. RESULTS: Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P < .001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared with females. CONCLUSION: Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy has a significant impact on the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment.


Asunto(s)
Dieta Alta en Grasa , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Obesidad/complicaciones , Prosencéfalo/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/genética , Masculino , Ratones Endogámicos C57BL , Embarazo , Análisis de Componente Principal , Factores Sexuales
7.
J Neurosci ; 34(4): 1138-47, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24453307

RESUMEN

The gene Dyrk1a is the mammalian ortholog of Drosophila minibrain. Dyrk1a localizes in the Down syndrome (DS) critical region of chromosome 21q22.2 and is a major candidate for the behavioral and neuronal abnormalities associated with DS. PFC malfunctions are a common denominator in several neuropsychiatric diseases, including DS, but the contribution of DYRK1A in PFC dysfunctions, in particular the synaptic basis for impairments of executive functions reported in DS patients, remains obscure. We quantified synaptic plasticity, biochemical synaptic markers, and dendritic morphology of deep layer pyramidal PFC neurons in adult mBACtgDyrk1a transgenic mice that overexpress Dyrk1a under the control of its own regulatory sequences. We found that overexpression of Dyrk1a largely increased the number of spines on oblique dendrites of pyramidal neurons, as evidenced by augmented spine density, higher PSD95 protein levels, and larger miniature EPSCs. The dendritic alterations were associated with anomalous NMDAR-mediated long-term potentiation and accompanied by a marked reduction in the pCaMKII/CaMKII ratio in mBACtgDyrk1a mice. Retrograde endocannabinoid-mediated long-term depression (eCB-LTD) was ablated in mBACtgDyrk1a mice. Administration of green tea extracts containing epigallocatechin 3-gallate, a potent DYRK1A inhibitor, to adult mBACtgDyrk1a mice normalized long-term potentiation and spine anomalies but not eCB-LTD. However, inhibition of the eCB deactivating enzyme monoacylglycerol lipase normalized eCB-LTD in mBACtgDyrk1a mice. These data shed light on previously undisclosed participation of DYRK1A in adult PFC dendritic structures and synaptic plasticity. Furthermore, they suggest its involvement in DS-related endophenotypes and identify new potential therapeutic strategies.


Asunto(s)
Síndrome de Down/genética , Plasticidad Neuronal/genética , Corteza Prefrontal/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Células Piramidales/fisiopatología , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Corteza Prefrontal/patología , Células Piramidales/patología , Quinasas DyrK
8.
Am J Med Genet A ; 167A(9): 1993-2008, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25975229

RESUMEN

Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Down/genética , Feto/metabolismo , Transcriptoma/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Fenotipo , Embarazo , Regulación hacia Arriba/genética
9.
Neurobiol Dis ; 69: 65-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24801365

RESUMEN

Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.


Asunto(s)
Dosificación de Gen , Aprendizaje , Inhibición Neural/genética , Plasticidad Neuronal/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Síndrome de Down/psicología , Humanos , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Actividad Motora/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Convulsiones/genética , Convulsiones/fisiopatología , Sinapsis/genética , Sinapsis/fisiología , Quinasas DyrK
10.
Curr Opin Obstet Gynecol ; 26(2): 92-103, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24573065

RESUMEN

PURPOSE OF REVIEW: Down syndrome affects more than 5 million people globally. During the last 10 years, there has been a dramatic increase in the research efforts focused on therapeutic interventions to improve learning and memory in Down syndrome. RECENT FINDINGS: This review summarizes the different functional abnormalities targeted by researchers in mouse models of Down syndrome. Three main strategies have been used: neural stem cell implantation; environmental enrichment and physical exercise; and pharmacotherapy. Pharmacological targets include the choline pathway, GABA and NMDA receptors, DYRK1A protein, oxidative stress and pathways involved in development and neurogenesis. Many strategies have improved learning and memory as well as electrophysiological and molecular alterations in affected animals. To date, eight molecules have been tested in human adult clinical trials. No studies have yet been performed on infants. However, compelling studies reveal that permanent brain alterations originate during fetal life in Down syndrome. Early prenatal diagnosis offers a 28 weeks window to positively impact brain development and improve postnatal cognitive outcome in affected individuals. Only a few approaches (Epigallocatechine gallate, NAP/SAL, fluoxetine, and apigenin) have been used to treat mice in utero; these showed therapeutic effects that persisted to adulthood. SUMMARY: In this article, we discuss the challenges, recent progress, and lessons learned that pave the way for new therapeutic approaches in Down syndrome.


Asunto(s)
Síndrome de Down/terapia , Terapia Molecular Dirigida , Células-Madre Neurales , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Atención Prenatal , Trasplante de Células Madre , Animales , Animales Recién Nacidos , Apigenina/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Colina/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Femenino , Fluoxetina/farmacología , Humanos , Ratones , Ratones Transgénicos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Estrés Oxidativo/efectos de los fármacos , Embarazo , Atención Prenatal/métodos , Atención Prenatal/tendencias , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas DyrK
11.
Prenat Diagn ; 33(6): 614-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595836

RESUMEN

Trisomy 21 (T21) is the most common autosomal aneuploidy that is associated with intellectual disability. It is the focus of many prenatal screening programs across the globe. Pregnant women who receive a prenatal diagnosis of T21 in their fetus currently have the option of continuing or terminating their pregnancy, but no fetal treatment is available. In this paper, we review compelling morphogenetic, cellular, and molecular studies that, taken together, suggest that there is an important window of opportunity during fetal life to positively impact brain development to improve postnatal neurocognition and behavior. Although substantial progress has been made in understanding the basic neurobiology of Down syndrome (DS), the majority of pre-clinical trials is currently focused on adults. There are a number of challenges in the identification and development of novel antenatal therapies for DS, including the lack of toxicity and teratogenicity for the pregnant woman and the fetus, evidence that the compounds can cross the placenta and achieve therapeutic levels, and the demonstration of clinical improvement. Preliminary experiments in mouse models suggest that prenatal treatment of DS is an achievable goal.


Asunto(s)
Síndrome de Down/diagnóstico , Síndrome de Down/terapia , Diagnóstico Prenatal/métodos , Adulto , Animales , Encéfalo/embriología , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Fetoscopía/métodos , Fetoscopía/tendencias , Humanos , Ratones , Embarazo/sangre
12.
Biol Psychiatry ; 94(1): 84-97, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074246

RESUMEN

BACKGROUND: Despite successful preclinical treatment studies to improve neurocognition in the Ts65Dn mouse model of Down syndrome, translation to humans has failed. This raises questions about the appropriateness of the Ts65Dn mouse as the gold standard. We used the novel Ts66Yah mouse that carries an extra chromosome and the identical segmental Mmu16 trisomy as Ts65Dn without the Mmu17 non-Hsa21 orthologous region. METHODS: Forebrains from embryonic day 18.5 Ts66Yah and Ts65Dn mice, along with euploid littermate controls, were used for gene expression and pathway analyses. Behavioral experiments were performed in neonatal and adult mice. Because male Ts66Yah mice are fertile, parent-of-origin transmission of the extra chromosome was studied. RESULTS: Forty-five protein-coding genes mapped to the Ts65Dn Mmu17 non-Hsa21 orthologous region; 71%-82% are expressed during forebrain development. Several of these genes are uniquely overexpressed in Ts65Dn embryonic forebrain, producing major differences in dysregulated genes and pathways. Despite these differences, the primary Mmu16 trisomic effects were highly conserved in both models, resulting in commonly dysregulated disomic genes and pathways. Delays in motor development, communication, and olfactory spatial memory were present in Ts66Yah but more pronounced in Ts65Dn neonates. Adult Ts66Yah mice showed milder working memory deficits and sex-specific effects in exploratory behavior and spatial hippocampal memory, while long-term memory was preserved. CONCLUSIONS: Our findings suggest that triplication of the non-Hsa21 orthologous Mmu17 genes significantly contributes to the phenotype of the Ts65Dn mouse and may explain why preclinical trials that used this model have unsuccessfully translated to human therapies.


Asunto(s)
Síndrome de Down , Femenino , Ratones , Masculino , Humanos , Animales , Síndrome de Down/genética , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/metabolismo , Trisomía/genética , Hipocampo/metabolismo , Modelos Animales de Enfermedad
13.
Neurobiol Dis ; 46(1): 190-203, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22293606

RESUMEN

Copy number variation in a small region of chromosome 21 containing DYRK1A produces morphological and cognitive alterations in human. In mouse models, haploinsufficiency results in microcephaly, and a human DYRK1A gain-of-function model (three alleles) exhibits increased brain volume. To investigate these developmental aspects, we used a murine BAC clone containing the entire gene to construct an overexpression model driven by endogenous regulatory sequences. We compared this new model to two other mouse models with three copies of Dyrk1a, YACtgDyrk1a and Ts65Dn, as well as the loss-of-function model with one copy (Dyrk1a(+/-)). Growth, viability, brain weight, and brain volume depended strongly upon gene copy number. Brain region-specific variations observed in gain-of-function models mirror their counterparts in the loss-of-function model. Some variations, such as increased volume of the superior colliculus and ventricles, were observed in both the BAC transgenic and Ts65Dn mice. Using unbiased stereology we found that, in the cortex, neuron density is inversely related to Dyrk1a copy number but, in thalamic nuclei, neuron density is directly related to copy number. In addition, six genes involved either in cell division (Ccnd1 and pAkt) or in neuronal machinery (Gap43, Map2, Syp, Snap25) were regulated by Dyrk1a throughout development, from birth to adult. These results imply that Dyrk1a expression alters different cellular processes during brain development. Dyrk1a, then, has two roles in the development process: shaping the brain and controlling the structure of neuronal components.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Microcefalia/genética , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/fisiología , Animales , Apoptosis/fisiología , Encéfalo/citología , Proliferación Celular , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcefalia/patología , Microcefalia/fisiopatología , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
14.
Placenta ; 89: 58-66, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683073

RESUMEN

Down syndrome (DS) is the most common genetic disorder leading to developmental disability. The phenotypes associated with DS are complex and vary between affected individuals. Placental abnormalities in DS include differences in cytotrophoblast fusion that affect subsequent conversion to syncytiotrophoblast, atypical oxidative stress/antioxidant balance, and increased expression of genes that are also upregulated in the brains of individuals with Alzheimer's disease. Placentas in DS are prematurely senescent, showing atypical evidence of mineralization. Fetuses with DS are especially susceptible to adverse obstetric outcomes, including early in utero demise, stillbirth and growth restriction, all of which are related to placental function. The placenta, therefore, may provide key insights towards understanding the phenotypic variability observed in individuals with DS and aid in identifying biomarkers that can be used to evaluate phenotypic severity and prenatal treatments in real time. To address these issues, many different mouse models of DS have been generated to identify the mechanisms underlying developmental changes in many organ systems. Little is known, however, regarding placental development in the currently available mouse models of DS. Based upon the relative paucity of data on placental development in preclinical mouse models of DS, we recommend that future evaluation of new and existing models routinely include histologic and functional assessments of the placenta. In this paper we summarize studies performed in the placentas of both humans and mouse models with DS, highlighting gaps in knowledge and suggesting directions for future research.


Asunto(s)
Síndrome de Down/fisiopatología , Placenta/fisiopatología , Placentación/fisiología , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/metabolismo , Femenino , Ratones , Estrés Oxidativo/fisiología , Placenta/metabolismo , Embarazo
15.
Trends Mol Med ; 26(2): 150-169, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31706840

RESUMEN

While preclinical studies have reported improvement of behavioral deficits in the Ts65Dn mouse model of Down syndrome (DS), translation to human clinical trials to improve cognition in individuals with DS has had a poor success record. Timing of the intervention, choice of animal models, strategy for drug selection, and lack of translational endpoints between animals and humans contributed to prior failures of human clinical trials. Here, we focus on in vitro cell models from humans with DS to identify the molecular mechanisms underlying the brain phenotype associated with DS. We emphasize the importance of using these cell models to screen for therapeutic molecules, followed by validating them in the most suitable animal models prior to initiating human clinical trials.


Asunto(s)
Trastornos del Conocimiento/genética , Cognición/fisiología , Síndrome de Down/genética , Animales , Encéfalo/patología , Cromosomas Humanos Par 21/genética , Modelos Animales de Enfermedad , Humanos , Fenotipo , Células Madre Pluripotentes/patología
16.
Front Neurosci ; 13: 1335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920502

RESUMEN

BACKGROUND: Maternal over- and undernutrition in pregnancy plays a critical role in fetal brain development and function. The effects of different maternal diet compositions on intrauterine programing of the fetal brain is a lesser-explored area. The goal of this study was to investigate the impact of two chowmaternal diets on fetal brain gene expression signatures, fetal/neonatal growth, and neonatal and adult behavior in a mouse model. METHODS: Throughout pregnancy and lactation, female C57Bl/6J mice were fed one of two standard, commercially available chow diets (pellet versus powder). The powdered chow diet was relatively deficient in micronutrients and enriched for carbohydrates and n-3 long-chain polyunsaturated fatty acids compared to the pelleted chow. RNA was extracted from embryonic day 15.5 forebrains and hybridized to whole genome expression microarrays (N = 5/maternal diet group). Functional analyses of significantly differentially expressed fetal brain genes were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Neonatal behavior was assessed using a validated scale (N = 62 pellet-exposed and 31 powder-exposed). Hippocampal learning, locomotor behavior, and motor coordination were assessed in a subset of adults using fear conditioning, open field testing, and Rotarod tests (N = 16 pellet-exposed, 14 powder-exposed). RESULTS: Comparing powdered to pelleted chow diets, neither maternal weight trajectory in pregnancy nor embryo size differed. Maternal powdered chow diet was associated with 1647 differentially expressed fetal brain genes. Functional analyses identified significant upregulation of canonical pathways and upstream regulators involved in cell cycle regulation, synaptic plasticity, and sensory nervous system development in the fetal brain, and significant downregulation of pathways related to cell and embryo death. Pathways related to DNA damage response, brain immune response, amino acid and fatty acid transport, and dopaminergic signaling were significantly dysregulated. Powdered chow-exposed neonates were significantly longer but not heavier than pelleted chow-exposed counterparts. On neonatal behavioral testing, powdered chow-exposed neonates achieved coordination- and strength-related milestones significantly earlier, but sensory maturation reflexes significantly later. On adult behavioral testing, powdered chow-exposed offspring exhibited hyperactivity and hippocampal learning deficits. CONCLUSION: In wild-type offspring, two diets that differed primarily with respect to micronutrient composition had significant effects on the fetal brain transcriptome, neonatal and adult behavior. These effects did not appear to be mediated by alterations in gross maternal nutritional status nor fetal/neonatal weight. Maternal dietary content is an important variable to consider for investigators evaluating fetal brain development and offspring behavior.

17.
Dis Model Mech ; 11(6)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29716957

RESUMEN

Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Conducta Animal , Encéfalo/crecimiento & desarrollo , Síndrome de Down/genética , Regulación de la Expresión Génica , Longevidad/genética , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Síndrome de Down/patología , Síndrome de Down/fisiopatología , Femenino , Genoma , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Neurogénesis/genética , Neuronas/patología , Fenotipo
18.
PLoS One ; 11(12): e0168009, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27930746

RESUMEN

BACKGROUND: The Ts1Cje model of Down syndrome is of particular interest for perinatal studies because affected males are fertile. This permits affected pups to be carried in wild-type females, which is similar to human pregnancies. Here we describe the early natural history and growth profiles of Ts1Cje embryos and neonates and determine if heart defects are present in this strain. METHODS: Pups were studied either on embryonic (E) day 15.5, or from postnatal (P) day 3 through weaning on P21. PCR amplification targeting the neomycin cassette (present in Ts1Cje) and Sry (present in males) was used to analyze pup genotypes and sex ratios. Body weights and lengths, as well as developmental milestones, were recorded in Ts1Cje mice and compared to their wild-type (WT) littermates. Histological evaluations were performed at E15.5 to investigate the presence or absence of heart defects. Pups were divided into two groups: Ts1Cje-I pups survived past weaning and Ts1Cje-II pups died at some point before P21. RESULTS: Ts1Cje mouse embryos showed expected Mendelian ratios (45.8%, n = 66 for Ts1Cje embryos; 54.2%, n = 78 for WT embryos). Histological analysis revealed the presence of ventricular septal defects (VSDs) in 21% of Ts1Cje E15.5 embryos. After weaning, only 28.2% of pups were Ts1Cje (185 Ts1Cje out of 656 total pups generated), with males predominating (male:female ratio of 1.4:1). Among the recovered dead pups (n = 207), Ts1Cje (63.3%, n = 131, p<0.01) genotype was found significantly more often than WT (36.7%, n = 76). Retrospective analysis of Ts1Cje-II (pre-weaning deceased) pups showed that they were growth restricted compared to Ts1Cje-I pups (post-weaning survivors). Growth restriction correlated with statistically significant delays in achieving several neonatal milestones between P3 and P21 compared to Ts1Cje-I (post-weaning survivors) neonates and WT littermates. CONCLUSIONS: Ts1Cje genotype is not associated with increased early in utero mortality. Cardiac defects, specifically VSDs, are part of the phenotype in this strain. There is increased neonatal mortality in Ts1Cje pups, with sex differences observed. Ts1Cje mice that died in the neonatal period were more likely to be growth restricted and delayed in achieving neonatal developmental milestones.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down/patología , Animales , Animales Recién Nacidos , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Síndrome de Down/complicaciones , Síndrome de Down/embriología , Síndrome de Down/mortalidad , Femenino , Genotipo , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/patología , Masculino , Ratones , Reacción en Cadena de la Polimerasa Multiplex , Embarazo , Distribución por Sexo
19.
Sci Rep ; 6: 32353, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586445

RESUMEN

Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.


Asunto(s)
Síndrome de Down/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Redes y Vías Metabólicas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/metabolismo , Síndrome de Down/patología , Embrión de Mamíferos , Femenino , Feto , Dosificación de Gen , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Ratones Transgénicos , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/farmacología , Biología de Sistemas/métodos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
Mol Syndromol ; 7(5): 251-261, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27867340

RESUMEN

Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) in humans with an incidence of ∼1:1,000 live births worldwide. It is caused by the presence of an extra copy of all or a segment of the long arm of human chromosome 21 (trisomy 21). People with DS present with a constellation of phenotypic alterations involving most organs and organ systems. ID is present in all people with DS, albeit with variable severity. DS is also the most frequent genetic cause of Alzheimer's disease (AD), and ∼50% of those with DS will develop AD-related dementia. In the last few years, significant progress has been made in understanding the crucial genotype-phenotype relationships in DS, in identifying the alterations in molecular pathways leading to the various clinical conditions present in DS, and in preclinical evaluations of potential therapies to improve the overall health and well-being of individuals with DS. In June 2015, 230 scientists, advocates, patients, and family members met in Paris for the 1st International Conference of the Trisomy 21 Research Society. Here, we report some of the most relevant presentations that took place during the meeting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA