RESUMEN
Regional cerebral atrophy was evaluated in APP/PS1 mice harboring mutated transgenes linked to familial Alzheimer's disease, using complementary methods. In vivo high resolution MRI was selected for measurements of brain atrophy and associated cerebrospinal fluid dilation; histological analysis was performed to reveal localized atrophies and to evaluate amyloid burden. Young APP/PS1 mice examined at a pre-amyloid stage (10 weeks) showed disruption in development (reduced intracranial and brain volumes). Comparison of young and old (24 months) mice, indicated that both APP/PS1 and control brains endure growth during adulthood. Aged APP/PS1 animals showed a moderate although significant global brain atrophy and a dilation of CSF space in posterior brain regions. The locus of this atrophy was identified in the midbrain area and not, as expected, at isocortical/hippocampal levels. Atrophy was also detected in fiber tracts. The severity of brain atrophy in old APP/PS1 mice was not correlated with the extent of cerebral amyloidosis. The relevance of current transgenic mouse models for the study of brain atrophy related to Alzheimer's disease is discussed.
Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Encéfalo/patología , Imagen por Resonancia Magnética , Oligopéptidos/genética , Factores de Edad , Amiloide/metabolismo , Animales , Atrofia/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamaño de los Órganos/genética , Estadísticas no Paramétricas , Antígenos Thy-1/genéticaRESUMEN
Amyloid deposits are one of the hallmarks of Alzheimer's disease. Recent studies, in transgenic mice modeling Alzheimer's disease showed that, using in vivo, contrast agent-free, MRI, thalamic amyloid plaques are more easily detected than other plaques of the brain. Our study evaluated the characteristics of these thalamic plaques in a large population of APP/PS1, PS1 and C57BL/6 mice. Thalamic spots were detected in all mice but with different frequency and magnitude. Hence, the prevalence and size of the lesions were higher in APP/PS1 mice. However, even in APP/PS1 mice, thalamic spots did not occur in all the old animals. In APP/PS1 mice, spots detection was related to high iron and calcium load within amyloid plaques and thus reflects the ability of such plaque to capture large amounts of minerals. Interestingly, calcium and iron was also detected in extra-thalamic plaques but with a lower intensity. Hypointense lesions in the thalamus were not associated with the iron load in the tissue surrounding the plaques, nor with micro-hemorrhages, inflammation, or a neurodegenerative context.
Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética/métodos , Placa Amiloide/patología , Presenilina-1/genética , Tálamo/patología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by deficient expression of the cytoskeletal protein, dystrophin. One third of DMD patients also have mental retardation (MR), likely due to mutations preventing expression of dystrophin and other brain products of the DMD gene expressed from distinct internal promoters. Loss of Dp71, the major DMD-gene product in brain, is thought to contribute to the severity of MR; however, the specific function of Dp71 is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Complementary approaches were used to explore the role of Dp71 in neuronal function and identify mechanisms by which Dp71 loss may impair neuronal and cognitive functions. Besides the normal expression of Dp71 in a subpopulation of astrocytes, we found that a pool of Dp71 colocalizes with synaptic proteins in cultured neurons and is expressed in synaptic subcellular fractions in adult brains. We report that Dp71-associated protein complexes interact with specialized modular scaffolds of proteins that cluster glutamate receptors and organize signaling in postsynaptic densities. We then undertook the first functional examination of the brain and cognitive alterations in the Dp71-null mice. We found that these mice display abnormal synapse organization and maturation in vitro, altered synapse density in the adult brain, enhanced glutamatergic transmission and reduced synaptic plasticity in CA1 hippocampus. Dp71-null mice show selective behavioral disturbances characterized by reduced exploratory and novelty-seeking behavior, mild retention deficits in inhibitory avoidance, and impairments in spatial learning and memory. CONCLUSIONS/SIGNIFICANCE: Results suggest that Dp71 expression in neurons play a regulatory role in glutamatergic synapse organization and function, which provides a new mechanism by which inactivation of Dp71 in association with that of other DMD-gene products may lead to increased severity of MR.
Asunto(s)
Conducta Animal , Distrofina/fisiología , Discapacidad Intelectual/fisiopatología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Distrofina/genética , Distrofina/metabolismo , Ácido Glutámico/metabolismo , Aprendizaje , Memoria , Ratones , Ratones Noqueados , Unión ProteicaRESUMEN
After cerebellar tumors resection, patients show motor skill learning impairments but also cognitive deficits. However, their exact origins remain controversial. Using a rat model of cerebellar injury, we assessed the involvement of two structures often damaged during resection (vermis and interpositus nuclei) on habits development. During extended training of an instrumental task, rats develop response routines that are no longer voluntary or goal-directed but habit-based, evidenced by their insensitivity to changes in the value of the reward. Here we showed that, in contrast to sham or vermis lesioned rats, discrete lesions to interpositus nuclei prevented rats from developing habits with overtraining, without motor difficulties, nor alteration of the instrumental task acquisition. Our results suggest that the role of the cerebellum can be extended from motor skill learning to cognitive routines learning. Similar habit impairment could possibly account for some of the long-term outcome difficulties observed in cerebellar-damaged patients.
Asunto(s)
Cerebelo/fisiología , Hábitos , Aprendizaje/fisiología , Desempeño Psicomotor/fisiología , Animales , Conducta Animal/fisiología , Cerebelo/lesiones , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
T1 and T2 magnetic resonance relaxation times have the potential to provide biomarkers of amyloid-beta deposition that could be helpful to the development of new therapies for Alzheimer's disease. Here, we measured T1 and T2 times as well as plaques and iron loads in APP/PS1 mice, which model brain amyloidosis, and control PS1 mice. Iron was mostly associated with amyloid deposits in APP/PS1 animals, while it was diffuse in the PS1 mice. T1 was negatively correlated with age in most structures in APP/PS1 animals. This may be related to the age-associated myelin loss described in APP/PS1 mice rather than to amyloid deposition. T2 in the subiculum of adult APP/PS1 animals was lower than in PS1 mice, which may be related to the very high amyloid and iron loads in this region. T2 in the subiculum could thus serve as an early marker of the amyloid pathology.