Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neural Transm (Vienna) ; 130(3): 281-297, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36335540

RESUMEN

Approximately 15 million babies are born prematurely every year and many will face lifetime motor and/or cognitive deficits. Children born prematurely are at higher risk of developing perinatal brain lesions, especially white matter injuries (WMI). Evidence in humans and rodents demonstrates that systemic inflammation-induced neuroinflammation, including microglial and astrocyte reactivity, is the prominent processes of WMI associated with preterm birth. Thus, a new challenge in the field of perinatal brain injuries is to develop new neuroprotective strategies to target neuroinflammation to prevent WMI. Serotonin (5-HT) and its receptors play an important role in inflammation, and emerging evidence indicates that 5-HT may regulate brain inflammation by the modulation of microglial reactivity and astrocyte functions. The present study is based on a mouse model of WMI induced by intraperitoneal (i.p.) injections of IL-1ß during the first 5 days of life. In this model, certain key lesions of preterm brain injuries can be summarized by (i) systemic inflammation, (ii) pro-inflammatory microglial and astrocyte activation, and (iii) inhibition of oligodendrocyte maturation, leading to hypomyelination. We demonstrate that Htr7 mRNA (coding for the HTR7/5-HT7 receptor) is significantly overexpressed in the anterior cortex of IL-1ß-exposed animals, suggesting it as a potential therapeutic target. LP-211 is a specific high-affinity HTR7 agonist that crosses the blood-brain barrier (BBB). When co-injected with IL-1ß, LP-211 treatment prevented glial reactivity, the down-regulation of myelin-associated proteins, and the apparition of anxiety-like phenotypes. Thus, HTR7 may represent an innovative therapeutic target to protect the developing brain from preterm brain injuries.


Asunto(s)
Lesiones Encefálicas , Nacimiento Prematuro , Sustancia Blanca , Animales , Ratones , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Sustancia Blanca/patología , Roedores , Enfermedades Neuroinflamatorias , Serotonina/metabolismo , Nacimiento Prematuro/metabolismo , Nacimiento Prematuro/patología , Encéfalo/metabolismo , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Inflamación/patología , Microglía/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563258

RESUMEN

Preterm birth (PTB) represents 15 million births every year worldwide and is frequently associated with maternal/fetal infections and inflammation, inducing neuroinflammation. This neuroinflammation is mediated by microglial cells, which are brain-resident macrophages that release cytotoxic molecules that block oligodendrocyte differentiation, leading to hypomyelination. Some preterm survivors can face lifetime motor and/or cognitive disabilities linked to periventricular white matter injuries (PWMIs). There is currently no recommendation concerning the mode of delivery in the case of PTB and its impact on brain development. Many animal models of induced-PTB based on LPS injections exist, but with a low survival rate. There is a lack of information regarding clinically used pharmacological substances to induce PTB and their consequences on brain development. Mifepristone (RU-486) is a drug used clinically to induce preterm labor. This study aims to elaborate and characterize a new model of induced-PTB and PWMIs by the gestational injection of RU-486 and the perinatal injection of pups with IL-1beta. A RU-486 single subcutaneous (s.c.) injection at embryonic day (E)18.5 induced PTB at E19.5 in pregnant OF1 mice. All pups were born alive and were adopted directly after birth. IL-1beta was injected intraperitoneally from postnatal day (P)1 to P5. Animals exposed to both RU-486 and IL-1beta demonstrated microglial reactivity and subsequent PWMIs. In conclusion, the s.c. administration of RU-486 induced labor within 24 h with a high survival rate for pups. In the context of perinatal inflammation, RU-486 labor induction significantly decreases microglial reactivity in vivo but did not prevent subsequent PWMIs.


Asunto(s)
Microglía , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Femenino , Humanos , Inflamación , Lipopolisacáridos/toxicidad , Ratones , Mifepristona/farmacología , Embarazo
3.
J Vis Exp ; (185)2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35938804

RESUMEN

Microglia, as brain resident macrophages, are fundamental to several functions, including response to environmental stress and brain homeostasis. Microglia can adopt a large spectrum of activation phenotypes. Moreover, microglia that endorse pro-inflammatory phenotype is associated with both neurodevelopmental and neurodegenerative disorders. In vitro studies are widely used in research to evaluate potential therapeutic strategies in specific cell types. In this context studying microglial activation and neuroinflammation in vitro using primary microglial cultures is more relevant than microglial cell lines or stem-cell-derived microglia. However, the use of some primary cultures might suffer from a lack of reproducibility. This protocol proposes a reproducible and relevant method of magnetically isolating microglia from neonate pups. Microglial activation using several stimuli after 4 h and 24 h by mRNA expression quantification and a Cy3-bead phagocytic assay is demonstrated here. The current work is expected to provide an easily reproducible technique for isolating physiologically relevant microglia from juvenile developmental stages.


Asunto(s)
Encéfalo , Microglía , Animales , Fenómenos Magnéticos , Ratones , Cultivo Primario de Células , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA