Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 113(6): 067001, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25148343

RESUMEN

We study the electronic screening mechanisms of the effective Coulomb on-site repulsion in hole-doped Sr(14)Cu(24)O(41) compared to undoped La(6)Ca(8)Cu(24)O(41) using polarization dependent high-resolution resonant inelastic x-ray scattering at Cu M edges. By measuring the energy of the effective Coulomb on-site repulsion and the spin excitations, we estimate superexchange and hopping matrix element energies along rungs and legs, respectively. Interestingly, hole doping locally screens the Coulomb on-site repulsion reducing it by as much as 25%. We suggest that the increased ratio of the electronic kinetic to the electronic correlation energy contributes to the local superexchange mediated pairing between holes.

2.
Opt Express ; 19(12): 11059-70, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21716334

RESUMEN

The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.


Asunto(s)
Bacterias/citología , Electrones , Fibroblastos/citología , Holografía/métodos , Rayos Láser , Microscopía/métodos , Agua/química , Animales , Nanoestructuras , Ratas , Agua de Mar/microbiología , Rayos X
3.
Phys Rev Lett ; 105(25): 253003, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231587

RESUMEN

Photofragmentation of the protonated water dimer H+(H2O)_{2}, a fundamental system both in aqueous solutions and gas-phase water clusters, has been studied at 13.8 nm using the Free Electron Laser FLASH in Hamburg. In a crossed-beam experiment using time-resolved, single-molecule fragment imaging, the two-body breakup into H2O++H3O+ was found as a prominent fragmentation channel with a kinetic energy release of up to 10 eV. This channel was observed with at least a similar yield as events with stronger fragmentation, producing protons together with neutral fragments and showing an absolute cross section of (0.5 ± 0.2) × 10(-18) cm2.

4.
Phys Rev Lett ; 102(3): 035502, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19257367

RESUMEN

Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure. It is also significant that this approach paves the way for the imaging of the class of specimens which readily form 2D, but not three-dimensional crystals. We show that the structure is reconstructed to the detected resolution, given an adequate signal-to-noise ratio.


Asunto(s)
Cristalografía por Rayos X/métodos , Cristalografía por Rayos X/instrumentación , Electrones , Procesamiento de Imagen Asistido por Computador/métodos , Rayos Láser , Proteínas/química , Difracción de Rayos X/métodos
5.
Phys Rev Lett ; 98(22): 223202, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17677841

RESUMEN

Molecular photofragmentation has been studied by event imaging on HeH+ ions at 32 nm (38.7 eV) in a fast ion beam crossed with the free-electron laser in Hamburg (FLASH), analyzing neutral He product directions and energies. Fragmentation into He(1snl,n > or = 2)+H+ was observed to yield significant photodissociation at 32 nm with an absolute cross section of (1.4+/-0.7) x 10(-18) cm2, releasing energies of 10-20 eV. A clear dominance of photodissociation perpendicular to the laser polarization was found in contrast to the excitation paths so far emphasized in theoretical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA