Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Neuroanat ; 13: 82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680881

RESUMEN

Little is known about environmental influences on radial glia-like (RGL) α cells (radial astrocytes) and their relation to neurogenesis. Because radial glia is involved in adult neurogenesis and astrogenesis, we investigated this association in two migratory shorebird species that complete their autumnal migration using contrasting strategies. Before their flights to South America, the birds stop over at the Bay of Fundy in Canada. From there, the semipalmated sandpiper (Calidris pusilla) crosses the Atlantic Ocean in a non-stop 5-day flight, whereas the semipalmated plover (Charadrius semipalmatus) flies primarily overland with stopovers for rest and feeding. From the hierarchical cluster analysis of multimodal morphometric features, followed by the discriminant analysis, the radial astrocytes were classified into two main morphotypes, Type I and Type II. After migration, we detected differential changes in the morphology of these cells that were more intense in Type I than in Type II in both species. We also compared the number of doublecortin (DCX)-immunolabeled neurons with morphometric features of radial glial-like α cells in the hippocampal V region between C. pusilla and C. semipalmatus before and after autumn migration. Compared to migrating birds, the convex hull surface area of radial astrocytes increased significantly in wintering individuals in both C. semipalmatus and C. pusilla. Although to a different extent we found a strong correlation between the increase in the convex hull surface area and the increase in the total number of DCX immunostained neurons in both species. Despite phylogenetic differences, it is of interest to note that the increased morphological complexity of radial astrocytes in C. semipalmatus coincides with the fact that during the migratory process over the continent, the visuospatial environment changes more intensely than that associated with migration over Atlantic. The migratory flight of the semipalmated plover, with stopovers for feeding and rest, vs. the non-stop flight of the semipalmated sandpiper may differentially affect radial astrocyte morphology and neurogenesis.

2.
PLoS One ; 12(6): e0179134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28591201

RESUMEN

Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/crecimiento & desarrollo , Hipocampo/crecimiento & desarrollo , Neurogénesis/fisiología , Alaska , Animales , Océano Atlántico , Brasil , Cruzamiento , Canadá , Conducta Alimentaria , Neuronas , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA