Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(2): 524-541, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626040

RESUMEN

Carbon isotope discrimination (Δ13 C) in C3 woody plants is a key variable for the study of photosynthesis. Yet how Δ13 C varies at decadal scales, and across regions, and how it is related to gross primary production (GPP), are still incompletely understood. Here we address these questions by implementing a new Δ13 C modelling capability in the land-surface model JULES incorporating both photorespiratory and mesophyll-conductance fractionations. We test the ability of four leaf-internal CO2 concentration models embedded in JULES to reproduce leaf and tree-ring (TR) carbon isotopic data. We show that all the tested models tend to overestimate average Δ13 C values, and to underestimate interannual variability in Δ13 C. This is likely because they ignore the effects of soil water stress on stomatal behavior. Variations in post-photosynthetic isotopic fractionations across species, sites and years, may also partly explain the discrepancies between predicted and TR-derived Δ13 C values. Nonetheless, the "least-cost" (Prentice) model shows the lowest biases with the isotopic measurements, and lead to improved predictions of canopy-level carbon and water fluxes. Overall, modelled Δ13 C trends vary strongly between regions during the recent (1979-2016) historical period but stay nearly constant when averaged over the globe. Photorespiratory and mesophyll effects modulate the simulated global Δ13 C trend by 0.0015 ± 0.005‰ and -0.0006 ± 0.001‰ ppm-1 , respectively. These predictions contrast with previous findings based on atmospheric carbon isotope measurements. Predicted Δ13 C and GPP tend to be negatively correlated in wet-humid and cold regions, and in tropical African forests, but positively related elsewhere. The negative correlation between Δ13 C and GPP is partly due to the strong dominant influences of temperature on GPP and vapor pressure deficit on Δ13 C in those forests. Our results demonstrate that the combined analysis of Δ13 C and GPP can help understand the drivers of photosynthesis changes in different climatic regions.


Asunto(s)
Ecosistema , Plantas , Ciclo del Carbono , Dióxido de Carbono , Isótopos de Carbono , Fotosíntesis , Hojas de la Planta
2.
Proc Natl Acad Sci U S A ; 116(34): 16909-16914, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383758

RESUMEN

Multiple lines of evidence suggest that plant water-use efficiency (WUE)-the ratio of carbon assimilation to water loss-has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance.


Asunto(s)
Carbono/metabolismo , Bosques , Modelos Biológicos , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Agua/metabolismo , Dióxido de Carbono/metabolismo , Estados Unidos
3.
Glob Chang Biol ; 27(8): 1560-1571, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33464665

RESUMEN

Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca ). Existing theory and empirical evidence suggest a proportional WUE increase in response to rising ca as plants maintain a relatively constant ratio between the leaf intercellular (ci ) and ambient (ca ) partial CO2 pressure (ci /ca ). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long-term WUE responses to ca and climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca . This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci /ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2 's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.


Asunto(s)
Dióxido de Carbono , Agua , Secuestro de Carbono , Clima , Bosques
4.
Ecol Lett ; 22(3): 506-517, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30609108

RESUMEN

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (Vcmax ), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.


Asunto(s)
Aclimatación , Dióxido de Carbono , Fotosíntesis , Adaptación Fisiológica , Nitrógeno , Hojas de la Planta , Ribulosa-Bifosfato Carboxilasa
5.
Ecol Lett ; 20(6): 730-740, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28464375

RESUMEN

One of the major challenges in ecology is to understand how ecosystems respond to changes in environmental conditions, and how taxonomic and functional diversity mediate these changes. In this study, we use a trait-spectra and individual-based model, to analyse variation in forest primary productivity along a 3.3 km elevation gradient in the Amazon-Andes. The model accurately predicted the magnitude and trends in forest productivity with elevation, with solar radiation and plant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, and wood density) collectively accounting for productivity variation. Remarkably, explicit representation of temperature variation with elevation was not required to achieve accurate predictions of forest productivity, as trait variation driven by species turnover appears to capture the effect of temperature. Our semi-mechanistic model suggests that spatial variation in traits can potentially be used to estimate spatial variation in productivity at the landscape scale.


Asunto(s)
Ecosistema , Bosques , Hojas de la Planta , Árboles , Clima Tropical
7.
New Phytol ; 214(3): 1019-1032, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27768811

RESUMEN

Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling.


Asunto(s)
Altitud , Carbono/metabolismo , Bosques , Clima Tropical , Procesos Autotróficos , Ciclo del Carbono , Fotosíntesis
8.
New Phytol ; 214(3): 1002-1018, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27389684

RESUMEN

We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.


Asunto(s)
Altitud , Bosques , Humedad , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Pruebas de Enzimas , Cinética , Modelos Biológicos , Nitrógeno/metabolismo , Perú , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Especificidad de la Especie , Temperatura
9.
Rapid Commun Mass Spectrom ; 31(24): 2081-2091, 2017 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28940773

RESUMEN

RATIONALE: We evaluated the applicability of tree-ring δ13 C and δ18 O values in bulk wood - instead of the more time and lab-consuming α-cellulose δ13 C and δ18 O values, to assess climate and physiological signals across multiple sites and for six tree species along a latitudinal gradient (35°97'N to 45°20'N) of the northeastern United States. METHODS: Wood cores (n = 4 per tree) were sampled from ten trees per species. Cores were cross-dated within and across trees at each site, and for the last 30 years. Seven years, including the driest on record, were selected for this study. The δ13 C and δ18 O values were measured on two of the ten trees from the bulk wood and the α-cellulose. The offsets between materials in δ13 C and δ18 O values were assessed. Correlation and multiple regression analyses were used to evaluate the strength of the climate signal across sites. Finally the relationship between δ13 C and δ18 O values in bulk wood vs α-cellulose was analyzed to assess the consistency of the interpretation, in terms of CO2 assimilation and stomatal conductance, from both materials. RESULTS: We found offsets of 1.1‰ and 5.6‰ between bulk and α-cellulose for δ13 C and δ18 O values, respectively, consistent with offset values reported in the literature. Bulk wood showed similar or stronger correlations to climate parameters than α-cellulose for the investigated sites. In particular, temperature and vapor pressure deficit and standard precipitation-evaporation index (SPEI) were the most visible climate signals recorded in δ13 C and δ18 O values, respectively. For most of the species, there was no relationship between δ13 C and δ18 O values, regardless of the wood material considered. CONCLUSIONS: Extraction of α-cellulose was not necessary to detect climate signals in tree rings across the four investigated sites. Furthermore, the physiological information inferred from the dual isotope approach was similar for most of the species regardless of the material considered.


Asunto(s)
Isótopos de Carbono/análisis , Celulosa/química , Clima , Isótopos de Oxígeno/análisis , Madera/química , Carya/química , Celulosa/análisis , Espectrometría de Masas , New England , Pinaceae/química , Quercus/química , Análisis de Regresión , Árboles/química , Agua/química , Madera/análisis
10.
New Phytol ; 206(2): 614-36, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25581061

RESUMEN

Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Aclimatación , Respiración de la Célula , Clima , Modelos Teóricos , Fenotipo , Fotosíntesis , Hojas de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Temperatura
11.
Glob Chang Biol ; 21(12): 4613-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26146936

RESUMEN

This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep ) for four forests in the United Kingdom subjected to different Ndep : Scots pine and beech stands under high Ndep (HN, 13-19 kg N ha(-1)  yr(-1) ), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha(-1)  yr(-1) ). Changes of NO3 -N and NH4 -N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ(18) O, Δ(17) O and δ(15) N in NO3 (-) and δ(15) N in NH4 (+) , were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4 -N and NO3 -N concentrations in RF compared to the LN sites. Similar values of δ(15) N-NO3 (-) and δ(18) O in RF suggested similar source of atmospheric NO3 (-) (i.e. local traffic), while more positive values for δ(15) N-NH4 (+) at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N-forms changed after interacting with tree canopies. Indeed, (15) N-enriched NH4 (+) in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ(18) O and Δ(17) O, we quantified for the first time the proportion of NO3 (-) in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ(17) O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ(17) O.


Asunto(s)
Bosques , Nitrificación , Nitrógeno/análisis , Árboles/química , Inglaterra , Isótopos de Nitrógeno/análisis
12.
Oecologia ; 175(3): 875-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817196

RESUMEN

Partially mycoheterotrophic (mixotrophic) plants gain carbon from both photosynthesis and their mycorrhizal fungi. This is considered an ancestral state in the evolution of full mycoheterotrophy, but little is known about this nutrition, and especially about the physiological balance between photosynthesis and fungal C gain. To investigate possible compensation between photosynthesis and mycoheterotrophy in the Mediterranean mixotrophic orchid Limodorum abortivum, fungal colonization was experimentally reduced in situ by fungicide treatment. We measured photosynthetic pigments of leaves, stems, and ovaries, as well as the stable C isotope compositions (a proxy for photosynthetic C gain) of seeds and the sizes of ovaries and seeds. We demonstrate that (1) in natural conditions, photosynthetic pigments are most concentrated in ovaries; (2) pigments and photosynthetic C increase in ovaries when fungal C supply is impaired, buffering C limitations and allowing the same development of ovaries and seeds as in natural conditions; and (3) responses to light of pigment and (13)C contents in ovaries shift from null responses in natural conditions to responses typical of autotrophic plants in treated L. abortivum, demonstrating photoadaptation and enhanced use of light in the latter. L. abortivum thus preferentially feeds on fungi in natural conditions, but employs compensatory photosynthesis to buffer fungal C limitations and allow seed development.


Asunto(s)
Fenómenos Fisiológicos de la Nutrición , Orchidaceae/fisiología , Evolución Biológica , Isótopos de Carbono/metabolismo , Micorrizas/fisiología , Orchidaceae/metabolismo , Orchidaceae/microbiología , Fotosíntesis/fisiología , Pigmentos Biológicos/metabolismo , Estructuras de las Plantas/metabolismo
13.
J Clin Med ; 13(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276125

RESUMEN

Catheter-based revascularization procedures were developed as an alternative to systemic thrombolysis for patients with intermediate-high- and high-risk pulmonary embolisms. USAT IH-PE is a retrospective and prospective multicenter registry of such patients treated with ultrasound-facilitated, catheter-directed thrombolysis, whose preliminary results are presented in this study. The primary endpoint was the incidence of pulmonary hypertension (PH) at follow-up. Secondary endpoints were short- and mid-term changes in the echocardiographic parameters of right ventricle (RV) function, in-hospital and all-cause mortality, and procedure-related bleeding events. Between March 2018 and July 2023, 102 patients were included. The majority were at intermediate-high-risk PE (86%), were mostly female (57%), and had a mean age of 63.7 ± 14.5 years, and 28.4% had active cancer. Echocardiographic follow-up was available for 70 patients, and in only one, the diagnosis of PH was confirmed by right heart catheterization, resulting in an incidence of 1.43% (CI 95%, 0.036-7.7). RV echocardiographic parameters improved both at 24 h and at follow-up. In-hospital mortality was 3.9% (CI 95%, 1.08-9.74), while all-cause mortality was 11% (CI 95%, 5.4-19.2). Only 12% had bleeding complications, of whom 4.9% were BARC ≥ 3. Preliminary results from the USAT IH-PE registry showed a low incidence of PH, improvement in RV function, and a safe profile.

14.
Nat Commun ; 15(1): 6169, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103349

RESUMEN

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Bosques , Estaciones del Año , Tracheophyta , Madera , Carbono/metabolismo , Madera/metabolismo , Madera/química , Tracheophyta/metabolismo , Biomasa , Ecosistema , Ciclo del Carbono , Árboles/metabolismo
15.
Glob Chang Biol ; 18(9): 2925-44, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24501068

RESUMEN

The objective of this study is to globally assess the effects of atmospheric nitrogen deposition and climate, associated with rising levels of atmospheric CO2 , on the variability of carbon isotope discrimination (Δ(13) C), and intrinsic water-use efficiency (iWUE) of angiosperm and conifer tree species. Eighty-nine long-term isotope tree-ring chronologies, representing 23 conifer and 13 angiosperm species for 53 sites worldwide, were extracted from the literature, and used to obtain long-term time series of Δ(13) C and iWUE. Δ(13) C and iWUE were related to the increasing concentration of atmospheric CO2 over the industrial period (1850-2000) and to the variation of simulated atmospheric nitrogen deposition and climatic variables over the period 1950-2000. We applied generalized additive models and linear mixed-effects models to predict the effects of climatic variables and nitrogen deposition on Δ(13) C and iWUE. Results showed a declining Δ(13) C trend in the angiosperm and conifer species over the industrial period and a 16.1% increase of iWUE between 1850 and 2000, with no evidence that the increased rate was reduced at higher ambient CO2 values. The temporal variation in Δ(13) C supported the hypothesis of an active plant mechanism that maintains a constant ratio between intercellular and ambient CO2 concentrations. We defined linear mixed-effects models that were effective to describe the variation of Δ(13) C and iWUE as a function of a set of environmental predictors, alternatively including annual rate (Nrate ) and long-term cumulative (Ncum ) nitrogen deposition. No single climatic or atmospheric variable had a clearly predominant effect, however, Δ(13) C and iWUE showed complex dependent interactions between different covariates. A significant association of Nrate with iWUE and Δ(13) C was observed in conifers and in the angiosperms, and Ncum was the only independent term with a significant positive association with iWUE, although a multi-factorial control was evident in conifers.

16.
Science ; 376(6594): 758-761, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549405

RESUMEN

Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.


Asunto(s)
Secuestro de Carbono , Bosques , Árboles , Árboles/crecimiento & desarrollo
17.
Nat Commun ; 13(1): 5005, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008385

RESUMEN

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Asunto(s)
Bosques , Fósforo , Carbono , Fotosíntesis , Hojas de la Planta/fisiología , Árboles/fisiología
18.
J Clin Med ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011911

RESUMEN

The COVID-19 pandemic has caused the destruction of routine hospital services globally, leading to an increase in the backlog of elective surgery cases. The aim of the study was to retrospectively investigate the pandemic's impact on the urologic oncology surgical activity of a high-volume center located in Milan, Italy. The number and type of procedures performed in 2020 during the COVID-19 pandemic was evaluated using 2019 data as control. Waiting times for each surgical procedure were compared, on a bimonthly basis, between the two different years. Overall, a 26.7% reduction in the number of urologic oncology surgeries between 2019 and 2020 was observed (2019: 720, 2020: 528). Both the main indication for surgery and the type of procedure performed significantly differed between 2019 and 2020 (all p < 0.0001), with a decrease in the number of radical prostatectomies and an increase in the number of radical cystectomies and radical nephrectomies/nephroureterectomies performed in 2020. Waiting time decreased by 20% between 2019 and 2020, with the most significant reduction seen after the first wave of the COVID-19 pandemic (July-October 2020), in particular for partial nephrectomy and radical prostatectomy, possibly due to the underdiagnosis of cases. In conclusion, in accordance with recommendations by international urological societies on prioritization strategies for oncological procedures, a higher proportion of surgeries for high-risk tumors was performed in 2020 at our center at the expense of procedures for lower risk diseases; however, future implications for patients' prognosis still need to be determined.

19.
Sci Total Environ ; 758: 143599, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33250244

RESUMEN

Drought, a natural hydrometeorological phenomenon, has been more frequent and more widespread due to climate change. Water availability strongly regulates the coupling (or trade-off) between carbon uptake via photosynthesis and water loss through transpiration, known as water-use efficiency (WUE). Understanding the effects of drought on WUE across different vegetation types and along the wet to dry gradient is paramount to achieving better understanding of ecosystem functioning in response to climate change. We explored the physiological and environmental control on ecosystem WUE in response to drought using observations for 44 eddy covariance flux sites in the Northern Hemisphere. We quantified the response of WUE to drought and the relative contributions of gross primary production (GPP) and evapotranspiration (ET) to the variations of WUE. We also examined the control of physiological and environmental factors on monthly WUE under different moisture conditions. Cropland had a peak WUE value under moderate drought conditions, while grassland, deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and evergreen needleleaf forest (ENF) had peak WUE under slight drought conditions. WUE was mainly driven by GPP for cropland, grassland, DBF, and ENF but was mainly driven by ET for EBF. Vapor pressure deficit (VPD) and canopy conductance (Gc) were the most important factors regulating WUE. Moreover, WUE had negative responses to air temperature, precipitation, and VPD but had a positive response to Gc and ecosystem respiration. Our findings highlight the different effects of biotic and abiotic factors on WUE among different vegetation types and the important roles of VPD and Gc in controlling ecosystem WUE in response to drought.

20.
Sci Rep ; 10(1): 12418, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709879

RESUMEN

Rising atmospheric CO2 (ca) has been shown to increase forest carbon uptake. Yet, whether the ca-fertilization effect on forests is modulated by changes in sulphur (Sdep) and nitrogen (Ndep) deposition and how Ndep affects ecosystem N availability remains unclear. We explored spatial and temporal (over 30-years) changes in tree-ring δ13C-derived intrinsic water-use efficiency (iWUE), δ18O and δ15N for four species in twelve forests across climate and atmospheric deposition gradients in Britain. The increase in iWUE was not uniform across sites and species-specific underlying physiological mechanisms reflected the interactions between climate and atmospheric drivers (oak and Scots pine), but also an age effect (Sitka spruce). Most species showed no significant trends for tree-ring δ15N, suggesting no changes in N availability. Increase in iWUE was mostly associated with increase in temperature and decrease in moisture conditions across the South-North gradient and over 30-years. However, when excluding Sitka spruce (to account for age or stand development effects), variations in iWUE were significantly associated with changes in ca and Sdep. Our data suggest that overall climate had the prevailing effect on changes in iWUE across the investigated sites. Whereas, detection of Ndep, Sdep and ca signals was partially confounded by structural changes during stand development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA