Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
4.
Br J Clin Pharmacol ; 78(6): 1343-53, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24902864

RESUMEN

AIM: The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after by-pass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-α (PPARα). METHODS: The effects induced by aspirin or PPARα agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). RESULTS: In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPARα expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPARα-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. CONCLUSIONS: The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients.


Asunto(s)
Aspirina/farmacología , Megacariocitos/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Megacariocitos/metabolismo , Persona de Mediana Edad , PPAR alfa/genética , ARN Mensajero/análisis , Regulación hacia Arriba
5.
PLoS One ; 16(7): e0254878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34293019

RESUMEN

Musculoskeletal injuries, a public health priority also in the military context, are ascribed to several risk factors, including: increased reaction forces; low/reduced muscle strength, endurance, body mass, Vitamin D level, and bone density; inadequate lifestyles and environment. The MOVIDA Project-funded by the Italian Ministry of Defence-aims at developing a transportable toolkit (assessment instrumentation, assessment protocols and reference/risk thresholds) which integrates motor function assessment with biological, environmental and behavioural factors to help characterizing the risk of stress fracture, stress injury or muscle fatigue due to mechanical overload. The MOVIDA study has been designed following the STROBE guidelines for observational cross-sectional studies addressing healthy adults, both militaries and civilians, with varying levels of physical fitness (sedentary people, recreational athletes, and competitive athletes). The protocol of the study has been designed and validated and is hereby reported. It allows to collect and analyse anamnestic, diagnostic and lifestyle-related data, environmental parameters, and functional parameters measured through portable and wearable instrumentation during adapted 6 minutes walking test. The t-test, one and two-way ANOVA with post-hoc corrections, and ANCOVA tests will be used to investigate relevant differences among the groups with respect to biomechanical parameters; non-parametric statistics will be rather used for non-normal continuous variables and for quantitative discrete variables. Generalized linear models will be used to account for risk and confounding factors.


Asunto(s)
Atletas , Rendimiento Atlético , Aptitud Física , Vitamina D/sangre , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Medición de Riesgo , Factores de Riesgo
6.
Thromb Haemost ; 119(5): 726-734, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30759486

RESUMEN

Chronic treatment with aspirin in healthy volunteers (HVs) is associated with recovery of adenosine diphosphate (ADP)-induced platelet activation. The purinergic P2Y1 receptor exerts its effects via a Gq-protein, which is the same biochemical pathway activated by thromboxane-A2 receptor. We hypothesized that recovery of ADP-induced platelet activation could be attributed to increased P2Y1 expression induced by chronic aspirin exposure. We performed a multi-phase investigation which embraced both in vitro and in vivo experiments conducted in (1) human megakaryoblastic DAMI cells, (2) human megakaryocytic progenitor cell cultures, (3) platelets obtained from HVs treated with aspirin and (4) platelets obtained from aspirin-treated patients. DAMI cells treated with aspirin or WY14643 (PPARα agonist) had a significant up-regulation of P2Y1 mRNA, which was shown to be a PPARα-dependent process. In human megakaryocytic progenitors, in the presence of aspirin or WY14643, P2Y1 mRNA expression was higher than in mock culture. P2Y1 expression increased in platelets obtained from HVs treated with aspirin for 8 weeks. Platelets obtained from patients who were on aspirin for more than 2 months had increased P2Y1 expression and ADP-induced aggregation compared with patients on aspirin treatment for less than a month. Overall, our results suggest that aspirin induces genomic changes in megakaryocytes leading to P2Y1 up-regulation and that PPARα is the nuclear receptor involved in this regulation. Since P2Y1 is coupled to the same Gq-protein of thromboxane-A2 receptor, platelet adaptation in response to pharmacological inhibition seems not to be receptor specific, but may involve other receptors with the same biochemical pathway.


Asunto(s)
Aspirina/uso terapéutico , Plaquetas/fisiología , Células Progenitoras de Megacariocitos/fisiología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Receptores Purinérgicos P2Y1/metabolismo , Adenosina Difosfato/metabolismo , Anciano , Anciano de 80 o más Años , Línea Celular , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , PPAR alfa/agonistas , Activación Plaquetaria , Agregación Plaquetaria , Pirimidinas/farmacología , Receptores Purinérgicos P2Y1/genética
7.
Res Pract Thromb Haemost ; 2(3): 596-606, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30046765

RESUMEN

BACKGROUND: A mechanism involved in high on-aspirin treatment residual platelet reactivity is platelet multidrug resistance protein 4 (MRP4) overexpression. Aspirin enhances platelet MRP4 expression with a PPARα-dependent mechanism and reduces miR-21 expression that, in turn, downregulates PPARα expression. OBJECTIVE: The aim of our study was to verify the relationship between miR-21 and MRP4-PPARα levels induced by aspirin treatment. METHODS: We evaluated the changes in MRP4-PPARα, mRNA, MRP4 protein, and miR-21 expression induced by aspirin in: (i) in vitro-treated megakaryoblastic cell line (DAMI), (ii) primary megakaryocytes cultures and derived platelets, (iii) healthy volunteers' platelets treated with aspirin, and (iv) aspirinated patients (aspirin-treated patients) and in a control population (control). RESULTS: We observed an aspirin-induced reverse relationship between the expression of miR-21 and PPARα-MRP4. In DAMI cells the miR-21 mimic transfection reduces PPARα and MRP4 expression, even if cells were treated with aspirin after transfection. MiR-21 inhibitor transfection induces PPARα and MRP4 expression that are not enhanced by aspirin treatment. In human megakaryocytes, aspirin treatment lead to a miR-21 downregulation and a MRP4 upregulation and this trend is confirmed in derived platelets. In aspirin-treated volunteers, an inverse relationship between miR-21 and MRP4 platelet expression was found after aspirin treatment. A similar negative relationship was found in aspirin-treated patients vs the control population. CONCLUSION: The results reported in this study provide information that aspirin induces the modulation of platelet miR-21 expression levels and this modulation can be responsible for MRP4 enhancement in circulating platelets.

8.
Front Immunol ; 8: 1946, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375570

RESUMEN

Platelets (PLTs) are the major source of high-mobility group box 1 (HMGB1), a protein that is involved in sterile inflammation of blood vessels and thrombosis. Megakaryocytes (MKs) synthesize HMGB1 and transfer both protein and mRNA into PLTs and PLT-derived microvesicles (MV). Free HMGB1 found in supernatants of in vitro differentiated MKs and in a megakaryoblastic cell line (DAMI cells). Aspirin "in vivo" and "in vitro" not only reduces HMGB1 and receptor for advanced glycation end products expression on MKs and PLTs but also drives the movement of HMGB1 from MKs into PLTs and PLT-derived MV. These findings suggest that consumption of low doses of aspirin reduces the risk of atherosclerosis complications as well as reducing PLT aggregation by the inhibition of COX-1.

10.
PLoS One ; 7(7): e39796, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792187

RESUMEN

The tyrosine kinase Tie-2 and its ligands Angiopoietins (Angs) transduce critical signals for angiogenesis in endothelial cells. This receptor and Ang-1 are coexpressed in hematopoietic stem cells and in a subset of megakaryocytes, though a possible role of angiopoietins in megakaryocytic differentiation/proliferation remains to be demonstrated. To investigate a possible effect of Ang-1/Ang-2 on megakaryocytic proliferation/differentiation we have used both normal CD34(+) cells induced to megakaryocytic differentiation and the UT7 cells engineered to express the thrombopoietin receptor (TPOR, also known as c-mpl, UT7/mpl). Our results indicate that Ang-1/Ang-2 may have a role in megakaryopoiesis. Particularly, Ang-2 is predominantly produced and released by immature normal megakaryocytic cells and by undifferentiated UT7/mpl cells and slightly stimulated TPO-induced cell proliferation. Ang-1 production is markedly induced during megakaryocytic differentiation/maturation and potentiated TPO-driven megakaryocytic differentiation. Blocking endogenously released angiopoietins partially inhibited megakaryocytic differentiation, particularly for that concerns the process of polyploidization. According to these data it is suggested that an autocrine angiopoietin/Tie-2 loop controls megakaryocytic proliferation and differentiation.


Asunto(s)
Angiopoyetinas/metabolismo , Comunicación Autocrina , Diferenciación Celular , Megacariocitos/citología , Megacariocitos/metabolismo , Angiopoyetinas/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Megacariocitos/efectos de los fármacos , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Ribonucleasa Pancreática/genética , Ribonucleasa Pancreática/metabolismo , Transducción de Señal/efectos de los fármacos , Trombopoyetina/farmacología
11.
J Am Coll Cardiol ; 58(7): 752-61, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21816313

RESUMEN

OBJECTIVES: In this study we investigate: 1) the role of multidrug resistance protein-4 (MRP4), an organic anion unidirectional transporter, in modulating aspirin action on human platelet cyclooxygenase (COX)-1; and 2) whether the impairment of aspirin-COX-1 interaction, found in coronary artery bypass grafting (CABG) patients, could be dependent on MRP4-mediated transport. BACKGROUND: Platelets of CABG patients present a reduced sensitivity to aspirin despite in vivo and in vitro drug treatment. Aspirin is an organic anion and could be a substrate for MRP4. METHODS: Intracellular aspirin concentration and drug COX-1 activity, measured by thrombin-induced thromboxane B2 (TxB2) production, were evaluated in platelets obtained from healthy volunteers (HV) and hematopoietic-progenitor cell cultures reducing or not reducing MRP4-mediated transport. Platelet MRP4 expression was evaluated, in platelets from HV and CABG patients, by dot-blot or by immunogold-electromicrographs or immunofluorescence-microscopy analysis. RESULTS: Inhibition of MRP4-mediated transport by dipyridamole or Mk-571 increases aspirin entrapment and its in vitro effect on COX-1 activity (142.7 ± 34.6 pg/10(8) cells vs. 343.7 ± 169.3 pg/108 cells TxB2-production). Platelets derived from megakaryocytes transfected with MRP4 small interfering ribonucleic acid have a higher aspirin entrapment and drug COX-1 activity. Platelets from CABG patients showed a high expression of MRP4 whose in vitro inhibition enhanced aspirin effect on COX-1 (349 ± 141 pg/108 cells vs. 1,670 ± 646 pg/108 cells TxB2-production). CONCLUSIONS: Aspirin is a substrate for MRP4 and can be extruded from platelet through its transportation. Aspirin effect on COX-1 is little-related to MRP4-mediated aspirin transport in HV, but in CABG patients with MRP4 over-expression, its pharmacological inhibition enhances aspirin action in an efficient way.


Asunto(s)
Aspirina/farmacocinética , Plaquetas/metabolismo , Puente de Arteria Coronaria , Fibrinolíticos/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología , Inhibidores de Agregación Plaquetaria/farmacocinética , Adulto , Aspirina/farmacología , Transporte Biológico/efectos de los fármacos , Plaquetas/efectos de los fármacos , Células Cultivadas , AMP Cíclico/farmacología , Ciclooxigenasa 1/metabolismo , Dinoprostona/metabolismo , Interacciones Farmacológicas , Resistencia a Medicamentos , Femenino , Fibrinolíticos/farmacología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Propionatos/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Quinolinas/farmacología , ARN Interferente Pequeño/metabolismo , Ácido Salicílico/farmacocinética , Tromboxano B2/metabolismo
12.
J Cell Sci ; 119(Pt 4): 744-52, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16449323

RESUMEN

The megakaryocyte is a paradigm for mammalian polyploid cells. However, the mechanisms underlying megakaryocytic polyploidization have not been elucidated. In this study, we investigated the role of Shc-Ras-MAPK and PI3K-AKT-mTOR pathways in promoting megakaryocytic differentiation, maturation and polyploidization. CD34+ cells, purified from human peripheral blood, were induced in serum-free liquid suspension culture supplemented with thrombopoietin (TPO) to differentiate into a virtually pure megakaryocytic progeny (97-99% CD61+/CD41+ cells). The early and repeated addition to cell cultures of low concentrations of PD98059, an inhibitor of MEK1/2 activation, gave rise to a population of large megakaryocytes showing an increase in DNA content and polylobated nuclei (from 45% to 70% in control and treated cultures, respectively). Conversely, treatment with the mTOR inhibitor rapamycin strongly inhibited cell polyploidization, as compared with control cultures. Western blot analysis of PD98059-treated progenitor cells compared with the control showed a downmodulation of phospho-ERK 1 and phospho-ERK 2 and a minimal influence on p70S6K activation; by contrast, p70S6K activation was completely inhibited in rapamycin-treated cells. Interestingly, the cyclin D3 localization was nuclear in PD98059-induced polyploid megakaryocytes, whereas it was completely cytoplasmic in those treated with rapamycin. Altogether, our results are in line with a model in which binding of TPO to the TPO receptor (mpl) could activate the rapamycin-sensitive PI3K-AKT-mTOR-p70S6K pathway and its downstream targets in promoting megakaryocytic cell polyploidization.


Asunto(s)
Flavonoides/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Megacariocitos/citología , Megacariocitos/fisiología , Ploidias , Proteínas Quinasas/efectos de los fármacos , Sirolimus/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Medio de Cultivo Libre de Suero , Activación Enzimática/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR , Trombopoyetina/farmacología
13.
Blood ; 101(4): 1316-23, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12406876

RESUMEN

The expression/function of vascular endothelial growth factor (VEGF) receptors (VEGFR1/Flt1 and VEGFR2/KDR/Flk1) in hematopoiesis is under scrutiny. We have investigated the expression of Flt1 and kinase domain receptor (KDR) on hematopoietic precursors, as evaluated in liquid culture of CD34(+) hematopoietic progenitor cells (HPCs) induced to unilineage differentiation/maturation through the erythroid (E), megakaryocytic (Mk), granulocytic (G), or monocytic (Mo) lineage. KDR, expressed on 0.5% to 1.5% CD34(+) cells, is rapidly downmodulated on induction of differentiation. Similarly, Flt1 is present at very low levels in HPCs and is downmodulated in E and G lineages; however, Flt1 is induced in the precursors of both Mo and Mk series; ie, its level progressively increases during Mo maturation, and it peaks at the initial-intermediate culture stages in the Mk lineage. Functional experiments indicate that Mk and E, but not G and Mo, precursors release significant amounts of VEGF in the culture medium, particularly at low O(2) levels. The functional role of VEGF release on Mk maturation is indicated by 2 series of observations. (1) Molecules preventing the VEGF-Flt1 interaction on the precursor membrane (eg, soluble Flt1 receptors) significantly inhibit Mk polyploidization. (2) Addition of exogenous VEGF or placenta growth factor (PlGF) markedly potentiates Mk maturation. Conversely, VEGF does not modify Mo differentiation/maturation. Altogether, our results suggest that in the hematopoietic microenvironment an autocrine VEGF loop contributes to optimal Mk maturation through Flt1. A paracrine loop involving VEGF release by E precursors may also operate. Similarly, recent studies indicate that an autocrine loop involving VEGF and Flt1/Flk1 receptors mediates hematopoietic stem cell survival and differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Factores de Crecimiento Endotelial/fisiología , Células Madre Hematopoyéticas/citología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Linfocinas/fisiología , Megacariocitos/citología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Anticuerpos Monoclonales/farmacología , Western Blotting , Diferenciación Celular/efectos de los fármacos , Membrana Celular/química , Células Cultivadas , ADN/análisis , Factores de Crecimiento Endotelial/biosíntesis , Factores de Crecimiento Endotelial/farmacología , Células Precursoras Eritroides/química , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Citometría de Flujo , Expresión Génica , Células Madre Hematopoyéticas/química , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/farmacología , Linfocinas/biosíntesis , Linfocinas/farmacología , Megacariocitos/química , Megacariocitos/metabolismo , Monocitos/química , Monocitos/citología , Monocitos/metabolismo , Oxígeno/administración & dosificación , Poliploidía , ARN Mensajero/análisis , Trombopoyetina/farmacología , Factor A de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular/análisis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA