Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 20(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948457

RESUMEN

Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well-known role of RNA-binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage-inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long-term potentiation are strongly impaired in Gadd45a-deficient mice, a phenotype accompanied by reduced levels of memory-related mRNAs. The majority of the Gadd45α-regulated transcripts show unusually long 3' untranslated regions (3'UTRs) that are destabilized in Gadd45a-deficient mice via a transcription-independent mechanism, leading to reduced levels of the corresponding proteins in synaptosomes. Moreover, Gadd45α can bind specifically to these memory-related mRNAs. Our study reveals a new function for extended 3'UTRs in memory consolidation and identifies Gadd45α as a novel regulator of mRNA stability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica , Aprendizaje , Memoria , ARN Mensajero/genética , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Proteínas de Ciclo Celular/genética , Expresión Génica , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Plasticidad Neuronal/genética , Umbral del Dolor , Interferencia de ARN
2.
Int J Neuropsychopharmacol ; 19(2)2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232789

RESUMEN

BACKGROUND: Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS: Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS: Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION: Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.


Asunto(s)
Ansiedad/metabolismo , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Ácido Glutámico/metabolismo , Glicéridos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Animales , Ansiedad/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Convulsiones/psicología , Transducción de Señal/fisiología
3.
Neuropsychopharmacology ; 44(8): 1377-1388, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30532004

RESUMEN

Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses.


Asunto(s)
Ácidos Araquidónicos/fisiología , Emociones/fisiología , Endocannabinoides/fisiología , Etanolaminas/metabolismo , Ácido Glutámico/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Ácidos Palmíticos/metabolismo , Amidas , Amidohidrolasas/biosíntesis , Amidohidrolasas/genética , Animales , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Memoria/fisiología , Ratones , Neuronas/fisiología , Ácidos Oléicos , Alcamidas Poliinsaturadas/metabolismo , Transmisión Sináptica/fisiología , Regulación hacia Arriba
4.
Brain Struct Funct ; 221(4): 2061-74, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-25772509

RESUMEN

The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/fisiología , Dronabinol/administración & dosificación , Dronabinol/análogos & derivados , Potenciales Postsinápticos Excitadores , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/fisiología , Ácido Kaínico/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Piramidales/fisiología , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/fisiología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
5.
Nat Neurosci ; 15(4): 558-64, 2012 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-22388959

RESUMEN

The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB(1)) is present at the membranes of mouse neuronal mitochondria (mtCB(1)), where it directly controls cellular respiration and energy production. Through activation of mtCB(1) receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB(1) receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB(1) receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein-coupled receptor signaling in the brain.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Neuronas/metabolismo , Receptor Cannabinoide CB1/fisiología , Animales , Animales Recién Nacidos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neuronas/fisiología , Ratas , Receptor Cannabinoide CB1/metabolismo
6.
PLoS One ; 5(12): e15707, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21203567

RESUMEN

The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA)-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant adeno-associated virus (AAV) genome with a short stop element flanked by loxP sites, for highly efficient attenuation of transgene expression on the transcriptional level. The presence of Cre-recombinase is strictly necessary for expression of reporter proteins or CB1 receptor in vitro and in vivo. Transgenic CB1 receptor immunoreactivity is targeted to glutamatergic neurons after stereotaxic delivery of AAV to the dorsal hippocampus of the driver mice NEX-cre. Increased CB1 receptor protein levels in hippocampal lysates of AAV-treated Cre-mice is paralleled by enhanced cannabinoid-induced G-protein activation. KA-induced seizure severity and mortality is reduced in CB1 receptor overexpressors compared with AAV-treated control animals. Neuronal damage in the hippocampal CA3 field is specifically absent from AAV-treated Cre-transgenics, but evident throughout cortical areas of both treatment groups. Our data provide further evidence for a role of increased CB1 signaling in pyramidal hippocampal neurons as a safeguard against the adverse effects of excessive excitatory network activity.


Asunto(s)
Dependovirus/genética , Regulación de la Expresión Génica , Hipocampo/metabolismo , Integrasas/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Convulsiones/metabolismo , Animales , Conducta Animal , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Recombinación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA