Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 166(3): 1659-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25248718

RESUMEN

Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824 genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model. Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90% accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient condition.


Asunto(s)
Modelos Biológicos , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Zea mays/genética , Zea mays/metabolismo , Disponibilidad Biológica , Biomasa , Perfilación de la Expresión Génica , Genoma de Planta , Metaboloma , Mutación , Nitrógeno/farmacocinética , Proteoma/metabolismo
2.
J Exp Bot ; 65(19): 5657-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24863438

RESUMEN

In this review, we will present the latest developments in systems biology with particular emphasis on improving nitrogen-use efficiency (NUE) in crops such as maize and demonstrating the application of metabolic models. The review highlights the importance of improving NUE in crops and provides an overview of the transcriptome, proteome, and metabolome datasets available, focusing on a comprehensive understanding of nitrogen regulation. 'Omics' data are hard to interpret in the absence of metabolic flux information within genome-scale models. These models, when integrated with 'omics' data, can serve as a basis for generating predictions that focus and guide further experimental studies. By simulating different nitrogen (N) conditions at a pseudo-steady state, the reactions affecting NUE and additional gene regulations can be determined. Such models thus provide a framework for improving our understanding of the metabolic processes underlying the more efficient use of N-based fertilizers.


Asunto(s)
Genoma de Planta/genética , Metaboloma , Nitrógeno/metabolismo , Proteoma , Transcriptoma , Zea mays/metabolismo , Productos Agrícolas , Fertilizantes , Modelos Biológicos , Biología de Sistemas , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA