Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Acoust Soc Am ; 153(2): R3, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859158

RESUMEN

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.


Asunto(s)
Acústica , Cóclea
2.
Proc Natl Acad Sci U S A ; 116(28): 13977-13982, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235601

RESUMEN

Mammals detect sound through mechanosensitive cells of the cochlear organ of Corti that rest on the basilar membrane (BM). Motions of the BM and organ of Corti have been studied at the cochlear base in various laboratory animals, and the assumption has been that the cochleas of all mammals work similarly. In the classic view, the BM attaches to a stationary osseous spiral lamina (OSL), the tectorial membrane (TM) attaches to the limbus above the stationary OSL, and the BM is the major moving element, with a peak displacement near its center. Here, we measured the motion and studied the anatomy of the human cochlear partition (CP) at the cochlear base of fresh human cadaveric specimens. Unlike the classic view, we identified a soft-tissue structure between the BM and OSL in humans, which we name the CP "bridge." We measured CP transverse motion in humans and found that the OSL moved like a plate hinged near the modiolus, with motion increasing from the modiolus to the bridge. The bridge moved almost as much as the BM, with the maximum CP motion near the bridge-BM connection. BM motion accounts for 100% of CP volume displacement in the classic view, but accounts for only 27 to 43% in the base of humans. In humans, the TM-limbus attachment is above the moving bridge, not above a fixed structure. These results challenge long-held assumptions about cochlear mechanics in humans. In addition, animal apical anatomy (in SI Appendix) doesn't always fit the classic view.


Asunto(s)
Membrana Basilar/anatomía & histología , Cóclea/anatomía & histología , Oído Interno/anatomía & histología , Audición/fisiología , Estimulación Acústica , Animales , Fenómenos Biomecánicos , Oído Interno/fisiología , Cobayas , Humanos , Mamíferos/fisiología , Sonido , Membrana Tectoria/anatomía & histología , Vibración
3.
Ear Hear ; 42(5): 1295-1305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33625057

RESUMEN

OBJECTIVES: Current methods of diagnosing superior semicircular canal dehiscence syndrome (SCDS) include a clinical exam, audiometric testing, temporal bone computer tomography (CT) imaging, and vestibular evoked myogenic potential (VEMP) testing. The main objective of this study was to develop an improved diagnostic approach to SCDS optimized for accuracy, efficiency, and safety that utilizes clinical presentation, audiometric testing, CT imaging, high-frequency cervical VEMP (cVEMP) testing, and patient treatment preference. A secondary aim was to investigate the cost associated with the current versus proposed diagnostic paradigms. DESIGN: All patients who underwent cVEMP testing since introduction of the 2 kHz cVEMP in our clinical protocol in July 2018 were screened. Patients suspected of SCDS based upon symptoms who also had available audiogram, CT scan, and 2 kHz cVEMP were included (58 ears). Patients were categorized as dehiscent, thin, or not dehiscent based on their CT scan. Symptom prevalence and cVEMP outcomes were analyzed and compared for all groups. The accuracy of the 2 kHz cVEMP was calculated using CT imaging as the standard. Using a combination of patient symptomatology, audiometric, CT and 2 kHz cVEMP data, as well as patient preference, a best clinical practice approach was developed. The cost associated with this approach was calculated and compared with cost of the current SCDS diagnostic workup using Medicare reimbursement rates. RESULTS: In the overall patient population suspected of SCDS based on clinical presentation, the sensitivity and specificity of 2 kHz cVEMP were 76% and 100%, respectively, while the positive and negative predictive values were 100% and 84.6%, assuming that the CT scan finding was correct. Autophony was the most common symptom in patients who had both superior semicircular canal dehiscence on CT imaging plus abnormal 2 kHz cVEMP (p < 0.001). Combining patient symptomatology, 2 kHz normalized peak to peak cVEMP amplitude, and patient treatment preference to determine, which patients should undergo CT scanning resulted in a potential cost reduction between 45% and 61%. CONCLUSION: In patients suspected of SCDS based on their clinical presentation, the combination of symptomatology, 2 kHz cVEMP data, and patient preference can be used to determine which patients should undergo CT scanning, resulting in a diagnostic cost reduction and reduced patient radiation exposure.


Asunto(s)
Dehiscencia del Canal Semicircular , Potenciales Vestibulares Miogénicos Evocados , Anciano , Humanos , Medicare , Estudios Retrospectivos , Canales Semicirculares/diagnóstico por imagen , Hueso Temporal/diagnóstico por imagen , Estados Unidos
4.
Biophys J ; 118(5): 1183-1195, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31968228

RESUMEN

Cochlear amplification of basilar membrane traveling waves is thought to occur between a tone's characteristic frequency (CF) place and within one octave basal of the CF. Evidence for this view comes only from the cochlear base. Stimulus-frequency otoacoustic emissions (SFOAEs) provide a noninvasive alternative to direct measurements of cochlear motion that can be measured across a wide range of CF regions. Coherent reflection theory indicates that SFOAEs arise mostly from the peak region of the traveling wave, but several studies using far-basal suppressor tones claimed that SFOAE components originate many octaves basal of CF. We measured SFOAEs while perfusing guinea pig cochleas from apex to base with salicylate or KCl solutions that reduced outer-hair-cell function and SFOAE amplification. Solution effects on inner hair cells reduced auditory nerve compound action potentials (CAPs) and provided reference times for when solutions reached the SFOAE-frequency CF region. As solution flowed from apex to base, SFOAE reductions generally occurred later than CAP reductions and showed that the effects of cochlear amplification usually peaked ∼1/2 octave basal of the CF region. For tones ≥2 kHz, cochlear amplification typically extended ∼1.5 octaves basal of CF, and the data are consistent with coherent reflection theory. SFOAE amplification did not extend to the basal end of the cochlea, even though reticular lamina motion is amplified in this region, which indicates that reticular lamina motion is not directly coupled to basilar membrane traveling waves. Previous reports of SFOAE-frequency residuals produced by suppressor frequencies far above the SFOAE frequency are most likely due to additional sources created by the suppressor. For some tones <2 kHz, SFOAE amplification extended two octaves apical of CF, which highlights that different vibratory motions produce SFOAEs and CAPs, and that the amplification region depends on the cochlear mode of motion considered. The concept that there is a single "cochlear amplification region" needs to be revised.


Asunto(s)
Cóclea , Emisiones Otoacústicas Espontáneas , Estimulación Acústica , Potenciales de Acción , Animales , Cobayas , Células Ciliadas Auditivas Externas
5.
Ear Hear ; 40(4): 878-886, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30431457

RESUMEN

OBJECTIVES: To determine the most effective method for normalizing cervical vestibular evoked myogenic potentials (cVEMPs). DESIGN: cVEMP data from 20 subjects with normal hearing and vestibular function were normalized using 16 combinations of methods, each using one of the 4 modes of electromyogram (EMG) quantification described below. All methods used the peak to peak value of an averaged cVEMP waveform (VEMPpp) and obtained a normalized cVEMP by dividing VEMPpp by a measure of the EMG amplitude. EMG metrics were obtained from the EMG within short- and long-duration time windows. EMG amplitude was quantified by its root-mean-square (RMS) or average full-wave-rectified (RECT) value. The EMG amplitude was used by (a) dividing each individual trace by the EMG of this specific trace, (b) dividing VEMPpp by the average RMS or RECT of the individual trace EMG, (c) dividing the VEMPpp by an EMG metric obtained from the average cVEMP waveform, or (d) dividing the VEMPpp by an EMG metric obtained from an average cVEMP "noise" waveform. Normalization methods were compared by the normalized cVEMP coefficient of variation across subjects and by the area under the curve from a receiver-operating-characteristic analysis. A separate analysis of the effect of EMG-window duration was done. RESULTS: There were large disparities in the results from different normalization methods. The best methods used EMG metrics from individual-trace EMG measurements, not from part of the average cVEMP waveform. EMG quantification by RMS or RECT produced similar results. For most EMG quantifications, longer window durations were better in producing receiver-operating-characteristic with high areas under the curve. However, even short window durations worked well when the EMG metric was calculated from the average RMS or RECT of the individual-trace EMGs. Calculating the EMG from a long-duration window of a cVEMP "noise" average waveform was almost as good as the individual-trace-EMG methods. CONCLUSIONS: The best cVEMP normalizations use EMG quantification from individual-trace EMGs. To have the normalized cVEMPs accurately reflect the vestibular activation, a good normalization method needs to be used.


Asunto(s)
Electromiografía/métodos , Músculos del Cuello/fisiología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Adulto Joven
6.
Audiol Neurootol ; 23(6): 335-344, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30677753

RESUMEN

BACKGROUND: The cervical vestibular evoked myogenic potential (cVEMP) test measures saccular and inferior vestibular nerve function. The cVEMP can be elicited with different frequency stimuli and interpreted using a variety of metrics. Patients with superior semicircular canal dehiscence (SCD) syndrome generally have lower cVEMP thresholds and larger amplitudes, although there is overlap with healthy subjects. The aim of this study was to evaluate which metric and frequency best differentiate healthy ears from SCD ears using cVEMP. METHODS: Twenty-one patients with SCD and 23 age-matched controls were prospectively included and underwent cVEMP testing at 500, 750, 1,000 and 2,000 Hz. Sound level functions were obtained at all frequencies to acquire threshold and to calculate normalized peak-to-peak amplitude (VEMPn) and VEMP inhibition depth (VEMPid). Third window indicator (TWI) metrics were calculated by subtracting the 250-Hz air-bone gap from the ipsilateral cVEMP threshold at each frequency. Ears of SCD patients were divided into three groups based on CT imaging: dehiscent, thin or unaffected. The ears of healthy age-matched control subjects constituted a fourth group. RESULTS: Comparing metrics at all frequencies revealed that 2,000-Hz stimuli were most effective in differentiating SCD from normal ears. ROC analysis indicated that for both 2,000-Hz cVEMP threshold and for 2,000-Hz TWI, 100% specificity could be achieved with a sensitivity of 92.0%. With 2,000-Hz VEMPn and VEMPid at the highest sound level, 100% specificity could be achieved with a sensitivity of 96.0%. CONCLUSION: The best diagnostic accuracy of cVEMP in SCD patients can be achieved with 2,000-Hz tone burst stimuli, regardless of which metric is used.


Asunto(s)
Estimulación Acústica/métodos , Enfermedades del Laberinto/diagnóstico , Canales Semicirculares/fisiopatología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Vestíbulo del Laberinto/fisiopatología , Adulto , Anciano , Audiometría de Tonos Puros , Femenino , Humanos , Enfermedades del Laberinto/fisiopatología , Masculino , Persona de Mediana Edad , Inhibición Neural/fisiología , Estudios Prospectivos , Valores de Referencia , Sáculo y Utrículo/fisiopatología , Espectrografía del Sonido , Nervio Vestibular/fisiopatología
7.
Ear Hear ; 39(6): 1199-1206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29624541

RESUMEN

OBJECTIVES: Cervical vestibular evoked myogenic potentials (cVEMP) indirectly reveal the response of the saccule to acoustic stimuli through the inhibition of sternocleidomastoid muscle electromyographic response. VEMP inhibition depth (VEMPid) is a recently developed metric that estimates the percentage of saccular inhibition. VEMPid provides both normalization and better accuracy at low response levels than amplitude-normalized cVEMPs. Hopefully, VEMPid will aid in the clinical assessment of patients with vestibulopatholgy. To calculate VEMPid a template is needed. In the original method, a subject's own cVEMP was used as the template, but this method can be problematic in patients who do not have robust cVEMP responses. We hypothesize that a "generic" template, created by assembling cVEMPs from healthy subjects, can be used to compute VEMPid, which would facilitate the use of VEMPid in subjects with pathological conditions. DESIGN: A generic template was created by averaging cVEMP responses from 6 normal subjects. To compare VEMPid calculations using a generic versus a subject-specific template, cVEMPs were obtained in 40 healthy subjects using 500, 750, and 1000 Hz tonebursts at sound levels ranging from 98 to 123 dB peSPL. VEMPids were calculated both with the generic template and with the subject's own template. The ability of both templates to determine whether a cVEMP was present or not was compared with receiver operating characteristic curves. RESULTS: No significant differences were found between VEMPid calculations using a generic template versus using a subject-specific template for all frequencies and sound levels. Based on the receiver operating characteristic curves, the subject-specific and generic template did an equally good job at determining threshold. Within limits, the shape of the generic template did not affect these results. CONCLUSIONS: A generic template can be used instead of a subject-specific template to calculate VEMPid. Compared with cVEMP normalized by electromyographic amplitudes, VEMPid is advantageous because it averages zero when there is no sound stimulus and it allows the accumulating VEMPid value to be shown during data acquisition as a guide to deciding when enough data has been collected.


Asunto(s)
Sáculo y Utrículo/fisiología , Potenciales Vestibulares Miogénicos Evocados , Adulto , Análisis de Varianza , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Enfermedades Vestibulares/diagnóstico , Adulto Joven
8.
J Neurophysiol ; 118(2): 1164-1172, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28592687

RESUMEN

Autism spectrum disorder (ASD) is a developmental disability that is poorly understood. ASD can influence communication, social interaction, and behavior. Children with ASD often have sensory hypersensitivities, including auditory hypersensitivity (hyperacusis). In adults with hyperacusis who are otherwise neurotypical, the medial olivocochlear (MOC) efferent reflex is stronger than usual. In children with ASD, the MOC reflex has been measured, but without also assessing hyperacusis. We assessed the MOC reflex in children with ASD by measuring the strength of MOC-induced inhibition of transient-evoked otoacoustic emissions (TEOAEs), a noninvasive physiological measure that reflects cochlear amplification. MOC activity was evoked by contralateral noise. Hyperacusis was assessed subjectively on the basis of the children's symptoms. We found a significant correlation between hyperacusis scores and MOC strength in children with ASD. When children were divided into ASD-with-severe-hyperacusis (ASDs), ASD-with-not-severe-hyperacusis (ASDns), and neurotypical (NT) groups, the last two groups had similar hyperacusis and MOC reflexes, whereas the ASDs group, on average, had hyperacusis and MOC reflexes that were approximately twice as strong. The MOC inhibition of TEOAEs averaged larger at all frequencies in the ASDs compared with ASDns and NT groups. The results suggest that the MOC reflex can be used to estimate hyperacusis in children with ASD and might be used to validate future questionnaires to assess hyperacusis. Our results also provide evidence that strong MOC reflexes in children with ASD are associated with hyperacusis and that hyperacusis is a comorbid condition and is not a necessary, integral part of the abnormal neural processing associated with ASD.NEW & NOTEWORTHY Children with autism spectrum disorder (ASD) are a heterogeneous group, some with hyperacusis and some without. Our research shows that hyperacusis can be estimated in children with ASD by using medial olivocochlear (MOC) reflex measurements. By establishing that an objective measure correlates with attributes of hyperacusis, our results enable future work to enable subtyping of children with ASD to provide improved individualized treatments to at-risk children and those without adequate language to describe their hyperacusis symptoms.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Hiperacusia/fisiopatología , Inhibición Neural , Reflejo , Estimulación Acústica , Adolescente , Vías Auditivas/fisiopatología , Trastorno del Espectro Autista/complicaciones , Niño , Vías Eferentes/fisiopatología , Humanos , Hiperacusia/complicaciones , Hiperacusia/diagnóstico , Masculino , Índice de Severidad de la Enfermedad
9.
Audiol Neurootol ; 22(4-5): 282-291, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29324449

RESUMEN

BACKGROUND: The cervical vestibular evoked myogenic potential (cVEMP) represents an inhibitory reflex of the saccule measured in the ipsilateral sternocleidomastoid muscle (SCM) in response to acoustic or vibrational stimulation. Since the cVEMP is a modulation of SCM electromyographic (EMG) activity, cVEMP amplitude is proportional to muscle EMG amplitude. We sought to evaluate muscle contraction influences on cVEMP peak-to-peak amplitudes (VEMPpp), normalized cVEMP amplitudes (VEMPn), and inhibition depth (VEMPid). METHODS: cVEMPs at 500 Hz were measured in 25 healthy subjects for 3 SCM EMG contraction ranges: 45-65, 65-105, and 105-500 µV root mean square (r.m.s.). For each range, we measured cVEMP sound level functions (93-123 dB peSPL) and sound off, meaning that muscle contraction was measured without acoustic stimulation. The effect of muscle contraction amplitude on VEMPpp, VEMPn, and VEMPid and the ability to distinguish cVEMP presence/absence were evaluated. RESULTS: VEMPpp amplitudes were significantly greater at higher muscle contractions. In contrast, VEMPn and VEMPid showed no significant effect of muscle contraction. Cohen's d indicated that for all 3 cVEMP metrics contraction amplitude variations produced little change in the ability to distinguish cVEMP presence/absence. VEMPid more clearly indicated saccular output because when no acoustic stimulus was presented the saccular inhibition estimated by VEMPid was zero, unlike those by VEMPpp and VEMPn. CONCLUSION: Muscle contraction amplitude strongly affects VEMPpp amplitude, but contractions 45-300 µV r.m.s. produce stable VEMPn and VEMPid values. Clinically, there may be no need for subjects to exert high contraction effort. This is especially beneficial in patients for whom maintaining high SCM contraction amplitudes is challenging.


Asunto(s)
Contracción Muscular/fisiología , Músculos del Cuello/fisiología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Estimulación Acústica , Adulto , Anciano , Electromiografía , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Ear Hear ; 36(5): 591-604, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811931

RESUMEN

OBJECTIVES: Vestibular evoked myogenic potentials (VEMPs) are due to vestibular responses producing brief inhibitions of muscle contractions that are detectable in electromyographic (EMG) responses. VEMP amplitudes are traditionally measured by the peak to peak amplitude of the averaged EMG response (VEMPpp) or by a normalized VEMPpp (nVEMPpp). However, a brief EMG inhibition does not satisfy the statistical assumptions for the average to be the optimal processing strategy. Here, it is postulated that the inhibition depth of motoneuron firing is the desired metric for showing the influence of the vestibular system on the muscle system. The authors present a metric called "VEMPid" that estimates this inhibition depth from the EMG data obtained in a usual VEMP data acquisition. The goal of this article was to compare how well VEMPid, VEMPpp, and nVEMPpp track inhibition depth. DESIGN: To find a robust method to compare VEMPid, VEMPpp, and nVEMPpp, realistic physiological models for the inhibition of VEMP EMG signals were made using VEMP data from four measurement sessions on each of the five normal subjects. Each of the resulting 20 EMG-production models was adjusted to match the EMG autocorrelation of an individual subject and session. Simulated VEMP traces produced by these models were used to compare how well VEMPid, VEMPpp, and nVEMPpp tracked model inhibition depth. RESULTS: Applied to simulated and real VEMP data, VEMPid showed good test-retest consistency and greater sensitivity at low stimulus levels than VEMPpp or nVEMPpp. For large-amplitude responses, nVEMPpp and VEMPid were equivalent in their consistency across subjects and sessions, but for low-amplitude responses, VEMPid was superior. Unnormalized VEMPpp was always worse than nVEMPpp or VEMPid. CONCLUSIONS: VEMPid provides a more reliable measurement of vestibular function at low sound levels than the traditional nVEMPpp, without requiring a change in how VEMP tests are performed. The calculation method for VEMPid should be applicable whenever an ongoing muscle contraction is briefly inhibited by an external stimulus.


Asunto(s)
Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Músculos del Cuello/fisiología , Inhibición Neural/fisiología , Reflejo , Potenciales Vestibulares Miogénicos Evocados/fisiología , Vestíbulo del Laberinto/fisiología , Adulto , Simulación por Computador , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
J Acoust Soc Am ; 136(5): 2697-713, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25373970

RESUMEN

Otoacoustic emission (OAE) tests of the medial-olivocochlear reflex (MOCR) in humans were assessed for viability as clinical assays. Two reflection-source OAEs [TEOAEs: transient-evoked otoacoustic emissions evoked by a 47 dB sound pressure level (SPL) chirp; and discrete-tone SFOAEs: stimulus-frequency otoacoustic emissions evoked by 40 dB SPL tones, and assessed with a 60 dB SPL suppressor] were compared in 27 normal-hearing adults. The MOCR elicitor was a 60 dB SPL contralateral broadband noise. An estimate of MOCR strength, MOCR%, was defined as the vector difference between OAEs measured with and without the elicitor, normalized by OAE magnitude (without elicitor). An MOCR was reliably detected in most ears. Within subjects, MOCR strength was correlated across frequency bands and across OAE type. The ratio of across-subject variability to within-subject variability ranged from 2 to 15, with wideband TEOAEs and averaged SFOAEs giving the highest ratios. MOCR strength in individual ears was reliably classified into low, normal, and high groups. SFOAEs using 1.5 to 2 kHz tones and TEOAEs in the 0.5 to 2.5 kHz band gave the best statistical results. TEOAEs had more clinical advantages. Both assays could be made faster for clinical applications, such as screening for individual susceptibility to acoustic trauma in a hearing-conservation program.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas Externas/fisiología , Emisiones Otoacústicas Espontáneas/fisiología , Reflejo/fisiología , Complejo Olivar Superior/fisiología , Pruebas de Impedancia Acústica , Adolescente , Adulto , Audiometría , Umbral Auditivo , Susceptibilidad a Enfermedades , Vías Eferentes/fisiología , Femenino , Pérdida Auditiva Provocada por Ruido/fisiopatología , Humanos , Masculino , Reproducibilidad de los Resultados , Medición de Riesgo , Adulto Joven
12.
Artículo en Inglés | MEDLINE | ID: mdl-38937327

RESUMEN

PURPOSE: Tone-pip-evoked otoacoustic emissions (PEOAEs) are transient-evoked otoacoustic emissions (OAEs) that are hypothesized to originate from reflection of energy near the best-frequency (BF) cochlear place of the stimulus frequency. However, individual PEOAEs have energy with a wide range of delays. We sought to determine whether some PEOAE energy is consistent with having been generated far from BF. METHODS: PEOAEs from 35 and 47 dB SPL tone pips were obtained by removing pip-stimulus energy by subtracting the ear-canal sound pressure from scaled-down 59 dB SPL tone pips (which evoke relatively small OAEs). PEOAE delays were measured at each peak in the PEOAE absolute-value waveforms. While measuring PEOAEs and auditory-nerve compound action potentials (CAPs), amplification was blocked sequentially from apex to base by cochlear salicylate perfusion. The perfusion time when a CAP was reduced identified when the perfusion reached the tone-pip BF place. The perfusion times when each PEOAE peak was reduced identified where along the cochlea it received cochlear amplification. PEOAEs and CAPs were measured simultaneously using one pip frequency in each ear (1.4 to 4 kHz across 16 ears). RESULTS: Most PEOAE peaks received amplification primarily between the BF place and 1-2 octaves basal of the BF place. PEOAE peaks with short delays received amplification basal of BF place. PEOAE peaks with longer delays sometimes received amplification apical of BF place, consistent with previous stimulus-frequency-OAE results. CONCLUSION: PEOAEs provide information about cochlear amplification primarily within ~ 1.5 octave of the tone-pip BF place, not about regions > 3 octaves basal of BF.

13.
Ear Hear ; 34(1): 42-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22874644

RESUMEN

OBJECTIVES: Presently available nonbehavioral methods to estimate auditory thresholds perform less well at frequencies below 1 kHz than at 1 kHz and above. For many uses, such as providing accurate infant hearing aid amplification for low-frequency vowels, an accurate nonbehavioral method to estimate low-frequency thresholds is needed. A novel technique was developed to estimate low-frequency cochlear thresholds based on the use of a previously reported waveform. It was determined how well the method worked by comparing the resulting thresholds to thresholds from onset-response compound action potentials (CAPs) and single-auditory-nerve (AN)- fibers in cats. A long-term goal is to translate this technique for use in humans. DESIGN: An electrode near the cochlea records a combination of cochlear microphonic (CM) and neural responses. In response to low-frequency, near threshold-level tones, the CM is almost sinusoidal whereas the neural responses occur preferentially at one phase of the tone. If the tone is presented again but with its polarity reversed, the neural response keeps the same shape, but shifts ½ cycle in time. Averaging responses to tones presented separately at opposite polarities overlaps and interleaves the neural responses and yields a waveform in which the CM is canceled and the neural response appears twice each tone cycle, that is, the resulting neural response is mostly at twice the tone frequency. The resultant waveform is referred to as "the auditory nerve overlapped waveform" (ANOW). In this study, ANOW level functions were measured in anesthetized cats from 10 to 80 dB SPL in 10 dB steps using tones between 0.3 and 1 kHz. As a response metric, the magnitude of the ANOW component was calculated at twice the tone frequency (ANOW2f). The ANOW threshold was the sound level where the interpolated ANOW2f crossed a statistical criterion that was higher than 95% of the noise floor distribution. ANOW thresholds were compared with onset-CAP thresholds from the same recordings and single-AN-fiber thresholds from the same animals. RESULTS: ANOW and onset-CAP level functions were obtained for 0.3 to 1 kHz tones, and single-AN-fiber responses from cats. Except at 1 kHz, typical ANOW thresholds were mostly 10 to 20 dB more sensitive than onset-CAP thresholds and 10 to 20 dB less sensitive than the most sensitive single-AN-fiber thresholds. CONCLUSIONS: ANOW provides frequency-specific estimates of cochlear neural thresholds over a frequency range that is important for hearing but is not well accessed by nonbehavioral, objective methods. Results suggest that with further targeted development, the ANOW low-frequency threshold estimation technique can be useful both clinically in humans and in basic-science animal experiments.


Asunto(s)
Umbral Auditivo/fisiología , Potenciales Microfónicos de la Cóclea/fisiología , Nervio Coclear/fisiología , Potenciales Evocados Auditivos/fisiología , Pérdida Auditiva Sensorineural/diagnóstico , Pruebas Auditivas/métodos , Estimulación Acústica , Potenciales de Acción , Animales , Gatos , Electrodos
14.
J Physiol ; 595(13): 4123-4124, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28418114

Asunto(s)
Audición , Habla , Animales , Cóclea , Cobayas
15.
J Neurophysiol ; 107(6): 1598-611, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22190630

RESUMEN

The medial-olivocochlear (MOC) acoustic reflex is thought to provide frequency-specific feedback that adjusts the gain of cochlear amplification, but little is known about how frequency specific the reflex actually is. We measured human MOC tuning through changes in stimulus frequency otoacoustic emissions (SFOAEs) from 40-dB-SPL tones at probe frequencies (f(p)s) near 0.5, 1.0, and 4.0 kHz. MOC activity was elicited by 60-dB-SPL ipsilateral, contralateral, or bilateral tones or half-octave noise bands, with elicitor frequency (f(e)) varied in half-octave steps. Tone and noise elicitors produced similar results. At all probe frequencies, SFOAE changes were produced by a wide range of elicitor frequencies with elicitor frequencies near 0.7-2.0 kHz being particularly effective. MOC-induced changes in SFOAE magnitude and SFOAE phase were surprisingly different functions of f(e): magnitude inhibition largest for f(e) close to f(p), phase change largest for f(e) remote from f(p). The metric ΔSFOAE, which combines both magnitude and phase changes, provided the best match to reported (cat) MOC neural inhibition. Ipsilateral and contralateral MOC reflexes often showed dramatic differences in plots of MOC effect vs. elicitor frequency, indicating that the contralateral reflex does not give an accurate picture of ipsilateral-reflex properties. These differences in MOC effects appear to imply that ipsilateral and contralateral reflexes have different actions in the cochlea. The implication of these results for MOC function, cochlear mechanics, and the production of SFOAEs are discussed.


Asunto(s)
Vías Auditivas/fisiología , Cóclea/fisiología , Núcleo Olivar/fisiología , Reflejo Acústico/fisiología , Estimulación Acústica/métodos , Adulto , Umbral Auditivo , Femenino , Humanos , Masculino , Emisiones Otoacústicas Espontáneas/fisiología
16.
Front Surg ; 8: 687490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676239

RESUMEN

Background: Loudness recruitment is commonly experienced by patients with putative endolymphatic hydrops. Loudness recruitment is abnormal loudness growth with high-level sounds being perceived as having normal loudness even though hearing thresholds are elevated. The traditional interpretation of recruitment is that cochlear amplification has been reduced. Since the cochlear amplifier acts primarily at low sound levels, an ear with elevated thresholds from reduced cochlear amplification can have normal processing at high sound levels. In humans, recruitment can be studied using perceptual loudness but in animals physiological measurements are used. Recruitment in animal auditory-nerve responses has never been unequivocally demonstrated because the animals used had damage to sensory and neural cells, not solely a reduction of cochlear amplification. Investigators have thus looked for, and found, evidence of recruitment in the auditory central nervous system (CNS). While studies on CNS recruitment are informative, they cannot rule out the traditional interpretation of recruitment originating in the cochlea. Design: We used techniques that could assess hearing function throughout entire frequency- and dynamic-range of hearing. Measurements were made from two animal models: guinea-pig ears with endolymphatic-sac-ablation surgery to produce endolymphatic hydrops, and naïve guinea-pig ears with cochlear perfusions of 13 mM 2-Hydroxypropyl-Beta-Cyclodextrin (HPBCD) in artificial perilymph. Endolymphatic sac ablation caused low-frequency loss. Animals treated with HPBCD had hearing loss at all frequencies. None of these animals had loss of hair cells or synapses on auditory nerve fibers. Results: In ears with endolymphatic hydrops and those perfused with HPBCD, auditory-nerve based measurements at low frequencies showed recruitment compared to controls. Recruitment was not found at high frequencies (> 4 kHz) where hearing thresholds were normal in ears with endolymphatic hydrops and elevated in ears treated with HPBCD. Conclusions: We found compelling evidence of recruitment in auditory-nerve data. Such clear evidence has never been shown before. Our findings suggest that, in patients suspected of having endolymphatic hydrops, loudness recruitment may be a good indication that the associated low-frequency hearing loss originates from a reduction of cochlear amplification, and that measurements of recruitment could be used in differential diagnosis and treatment monitoring of Ménière's disease.

17.
Hear Res ; 395: 108040, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32784038

RESUMEN

The mechanical motions that deflect outer-hair-cell (OHC) stereocilia and the resulting effects of OHC motility are reviewed, concentrating on high-frequency cochlear regions. It has been proposed that a tectorial-membrane (TM) resonance makes the phase of OHC stereocilia motion be appropriate to produce cochlear amplification, i.e. so that the OHC force that pushes the basilar membrane (BM) is in the same direction as BM velocity. Evidence for and against the TM-resonance hypothesis are considered, including new cochlear-motion measurements using optical coherence tomography, and it is concluded that there is no such TM resonance. The evidence points to there being an advance in the phase of reticular lamina (RL) radial motion at a frequency approximately ½ octave below the BM characteristic frequency, and that this is the main source of the phase difference between the TM and RL radial motions that produces cochlear amplification. It appears that the change in phase of RL radial motion comes about because of a transition between different organ-of-Corti (OoC) vibrational modes that changes RL motion relative to BM and TM motion. The origins and consequences of the large phase change of RL radial motion relative to BM motion are considered; differences in the reported patterns of these changes may be due to different viewing angles. Detailed motion data and new models are needed to better specify the vibrational patterns of the OoC modes and the role of the various OoC structures in producing the modes and the mode transition.


Asunto(s)
Células Ciliadas Auditivas Externas , Estereocilios , Membrana Tectoria , Membrana Basilar , Cóclea , Órgano Espiral
18.
J Assoc Res Otolaryngol ; 21(2): 171-182, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32166603

RESUMEN

The classic view of cochlear partition (CP) motion, generalized to be for all mammals, was derived from basal-turn measurements in laboratory animals. Recently, we reported motion of the human CP in the cochlear base that differs substantially from the classic view. We described a human soft tissue "bridge" (non-existent in the classic view) between the osseous spiral lamina (OSL) and basilar membrane (BM), and showed how OSL and bridge move in response to sound. Here, we detail relevant human anatomy to better understand the relationship between form and function. The bridge and BM have similar widths that increase linearly from base to apex, whereas the OSL width decreases from base to apex, leading to an approximately constant total CP width throughout the cochlea. The bony three-dimensional OSL microstructure, reconstructed from unconventionally thin, 2-µm histological sections, revealed thin, radially wide OSL plates with pores that vary in size, extent, and distribution with cochlear location. Polarized light microscopy revealed collagen fibers in the BM that spread out medially through the bridge to connect to the OSL. The long width and porosity of the OSL may explain its considerable bending flexibility. The similarity of BM and bridge widths along the cochlea, both containing continuous collagen fibers, may make them a functional unit and allow maximum CP motion near the bridge-BM boundary, as recently described. These anatomical findings may help us better understand the motion of the structures surrounding the organ of Corti and how they shape the input to the cochlear sensory mechanism.


Asunto(s)
Lámina Espiral/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Membrana Basilar/anatomía & histología , Niño , Cóclea/fisiología , Femenino , Colágenos Fibrilares , Humanos , Imagenología Tridimensional , Masculino , Microscopía , Persona de Mediana Edad , Lámina Espiral/diagnóstico por imagen , Adulto Joven
19.
Otol Neurotol ; 40(10): 1346-1352, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568134

RESUMEN

OBJECTIVE: To investigate if the cervical vestibular evoked myogenic potential (cVEMP) is predictive for developing bilateral Menière's disease (MD). STUDY DESIGN: Retrospective cohort study. SETTING: Tertiary care center. PATIENTS: Records of 71 patients previously diagnosed with unilateral MD at our institution who underwent cVEMP testing between 2002 and 2011 were screened. INTERVENTION: Patients were contacted to answer a questionnaire to identify which patients had developed bilateral disease. Based on questionnaires and medical charts, 49 patients with a follow-up time of at least 5 years were included. The 49 originally asymptomatic ears are referred to as "study ears." Previously reported cVEMP criteria (original criteria) applied to study-ear cVEMPs separated them into Menière-like and normal-like groups. MAIN OUTCOME MEASURE: The main purpose was to determine if previously obtained cVEMP thresholds and tuning ratios of unilateral MD patients could predict who develops bilateral disease. RESULTS: From the 49 included patients, 12 developed bilateral disease (24.5%). The study ears characterized by original cVEMP criteria as Menière-like were significantly more likely to develop bilateral disease compared with the normal-like study ears. The original criteria predicted development of bilateral disease with a positive predictive value (PPV) and negative predictive value (NPV) of 58.3% and 86.5% respectively. ROC curves were used to revise cVEMP criteria for predicting the progression to bilateral disease. A revised criterion combining three cVEMP metrics, reached a PPV and NPV of 85.7% and 93.7%. CONCLUSION: cVEMP threshold and tuning in unilateral MD patients are predictive of which patients will develop bilateral disease.


Asunto(s)
Enfermedad de Meniere/diagnóstico , Potenciales Vestibulares Miogénicos Evocados , Vestíbulo del Laberinto/fisiopatología , Adulto , Anciano , Audiometría , Umbral Auditivo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos , Encuestas y Cuestionarios
20.
Otol Neurotol ; 40(3): e215-e224, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30741899

RESUMEN

OBJECTIVE: The cervical vestibular evoked myogenic potential (cVEMP) has been used to evaluate patients with Menière's disease (MD). Studied cVEMP metrics include: amplitude, threshold, frequency tuning, and interaural asymmetry ratio (IAR). However, few studies compared these metrics in the same set of MD patients, and methodological differences prevent such a comparison across studies. This study investigates the value of different cVEMP metrics in distinguishing one set of MD patients from age-matched controls. STUDY DESIGN: Prospective study. SETTING: Tertiary care center. PATIENTS: Thirty patients with definite unilateral MD and 23 age-matched controls were prospectively included. All underwent cVEMP testing at 500, 750, 1000, and 2000 Hz on each side. Ears were separated into three groups: affected MD, unaffected MD, and control. MAIN OUTCOME MEASURES: Sound level functions were obtained at each frequency, and normalized peak-to-peak amplitude (VEMPn), VEMP inhibition depth (VEMPid), threshold, frequency-tuning ratio, and IAR were calculated. For all metrics, the differentiation between MD and control ears was compared using receiver operating characteristic (ROC) curves. RESULTS: 500 Hz cVEMP threshold, VEMPn, and VEMPid were similarly good at distinguishing affected MD ears from healthy ears, with ROC area under the curves (AUCs) of more than 0.828 and optimal sensitivities and specificities of at least 80 and 70%. Combinations of these three metrics yielded slightly larger AUCs (>0.880). Tuning ratios and IAR were less effective in separating healthy from affected ears with AUCs ranging from 0.529 to 0.720. CONCLUSION: The cVEMP metrics most useful in distinguishing MD patients from healthy controls are threshold, VEMPn, and VEMPid, using 500 Hz stimuli.


Asunto(s)
Enfermedad de Meniere/diagnóstico , Potenciales Vestibulares Miogénicos Evocados/fisiología , Pruebas de Función Vestibular/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA