Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Br J Haematol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087522

RESUMEN

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by complex molecular and cytogenetic abnormalities. Pro-oxidant cellular redox status is a common hallmark of AML cells, providing a rationale for redox-based anticancer strategy. We previously discovered that auranofin (AUF), initially used for the treatment of rheumatoid arthritis and repositioned for its anticancer activity, can synergize with a pharmacological concentration of vitamin C (VC) against breast cancer cell line models. In this study, we observed that this drug combination synergistically and efficiently killed cells of leukaemic cell lines established from different myeloid subtypes. In addition to an induced elevation of reactive oxygen species and ATP depletion, a rapid dephosphorylation of 4E-BP1 and p70S6K, together with a strong inhibition of protein synthesis were early events in response to AUF/VC treatment, suggesting their implication in AUF/VC-induced cytotoxicity. Importantly, a study on 22 primary AML specimens from various AML subtypes showed that AUF/VC combinations at pharmacologically achievable concentrations were effective to eradicate primary leukaemic CD34+ cells from the majority of these samples, while being less toxic to normal cord blood CD34+ cells. Our findings indicate that targeting the redox vulnerability of AML with AUF/VC combinations could present a potential anti-AML therapeutic approach.

2.
Anal Chem ; 91(22): 14561-14568, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638767

RESUMEN

The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.


Asunto(s)
Desoxirribonucleótidos/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Auranofina/farmacología , Secuencia de Bases , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Hidroxiurea/farmacología , Límite de Detección , Prueba de Estudio Conceptual , Ribonucleótido Reductasas/antagonistas & inhibidores , Sensibilidad y Especificidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
3.
J Biol Chem ; 290(22): 14077-90, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25878246

RESUMEN

Ribonucleotide reductase (RnR) is a key enzyme synthesizing deoxyribonucleotides for DNA replication and repair. In mammals, the R1 catalytic subunit forms an active complex with either one of the two small subunits R2 and p53R2. Expression of R2 is S phase-specific and required for DNA replication. The p53R2 protein is expressed throughout the cell cycle and in quiescent cells where it provides dNTPs for mitochondrial DNA synthesis. Participation of R2 and p53R2 in DNA repair has also been suggested. In this study, we investigated the fate of the RnR subunits during apoptosis. The p53R2 protein was cleaved in a caspase-dependent manner in K-562 cells treated with inhibitors of the Bcr-Abl oncogenic kinase and in HeLa 229 cells incubated with TNF-α and cycloheximide. The cleavage site was mapped between Asp(342) and Asn(343). Caspase attack released a C-terminal p53R2 peptide of nine residues containing the conserved heptapeptide essential for R1 binding. As a consequence, the cleaved p53R2 protein was inactive. In vitro, purified caspase-3 and -8 could release the C-terminal tail of p53R2. Knocking down these caspases, but not caspase-2, -7, and -10, also inhibited p53R2 cleavage in cells committed to die via the extrinsic death receptor pathway. The R2 subunit was subjected to caspase- and proteasome-dependent proteolysis, which was prevented by siRNA targeting caspase-8. Knocking down caspase-3 was ineffective. Protein R1 was not subjected to degradation. Adding deoxyribonucleosides to restore dNTP pools transiently protected cells from apoptosis. These data identify RnR activity as a prosurvival function inactivated by proteolysis during apoptosis.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Desoxirribonucleótidos/química , Ribonucleótido Reductasas/metabolismo , Línea Celular , Proliferación Celular , ADN/química , Replicación del ADN , Humanos , Estructura Terciaria de Proteína , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
4.
Metallomics ; 16(5)2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38744662

RESUMEN

Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Oxidación-Reducción
5.
J Inorg Biochem ; 255: 112535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527404

RESUMEN

Human mitoNEET (mNT) and CISD2 are two NEET proteins characterized by an atypical [2Fe-2S] cluster coordination involving three cysteines and one histidine. They act as redox switches with an active state linked to the oxidation of their cluster. In the present study, we show that reduced glutathione but also free thiol-containing molecules such as ß-mercaptoethanol can induce a loss of the mNT cluster under aerobic conditions, while CISD2 cluster appears more resistant. This disassembly occurs through a radical-based mechanism as previously observed with the bacterial SoxR. Interestingly, adding cysteine prevents glutathione-induced cluster loss. At low pH, glutathione can bind mNT in the vicinity of the cluster. These results suggest a potential new regulation mechanism of mNT activity by glutathione, an essential actor of the intracellular redox state.


Asunto(s)
Proteínas Mitocondriales , Humanos , Cisteína/metabolismo , Glutatión/metabolismo , Homeostasis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo
6.
Genes (Basel) ; 14(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37107536

RESUMEN

Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory responses, and can eventually lead to cell death. Specifically, disrupting redox balance, essentially by increasing pro-oxidative molecules and favouring hyperoxidation, is a smart strategy to eliminate cells and has been used for cancer treatment, for example. Selectivity between cancer and normal cells thus appears crucial to avoid toxicity as much as possible. Redox-based approaches are also employed in the case of infectious diseases to tackle the pathogens specifically, with limited impacts on host cells. In this review, we focus on recent advances in redox-based strategies to fight eukaryotic pathogens, especially fungi and eukaryotic parasites. We report molecules recently described for causing or being associated with compromising redox homeostasis in pathogens and discuss therapeutic possibilities.


Asunto(s)
Enfermedades Transmisibles , Eucariontes , Oxidación-Reducción , Hongos/metabolismo
7.
J Biol Chem ; 286(10): 7873-7884, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21212274

RESUMEN

Nitric oxide (NO) is a potent activator of the p53 tumor suppressor protein, thereby inducing cell cycle arrest and apoptosis. However, little is known about the regulation of the two other p53-family members, p63 and p73, by nitrogen oxides. We report here an up-regulation of p73 by NO in p53-null K-562 leukemia cells. Chemical NO prodrugs or macrophage iNOS activity induced an accumulation of the TAp73α isoform in these cells, whereas macrophages from iNOS(-/-) mice did not. NO also up-regulated TAp73 mRNA expression, suggesting a transcriptional regulation. The checkpoint kinases Chk1 and Chk2 can regulate TAp73 induction after DNA damage. We show that these kinases were rapidly phosphorylated upon NO treatment. Genetic silencing or pharmacological inhibition of Chk1 impaired NO-mediated accumulation of TAp73α. Because NO is known to block DNA synthesis through ribonucleotide reductase inhibition, the up-regulation of TAp73α might be caused by DNA damage induced by an arrest of DNA replication forks. In support of this hypothesis, DNA replication inhibitors such as hydroxyurea and aphidicolin similarly enhanced TAp73α expression and Chk1 phosphorylation. Moreover, inhibition of Chk1 also prevented TAp73α accumulation in response to replication inhibitors. The knockdown of TAp73 with siRNA sensitized K-562 cells to apoptosis induced by a nitrosative (NO) or oxidative (H(2)O(2)) injury. Therefore, TAp73α has an unusual cytoprotective role in K-562 cells, contrasting with its pro-apoptotic functions in many other cell models. In conclusion, NO up-regulates several p53 family members displaying pro- and anti-apoptotic effects, suggesting a complex network of interactions and cross-regulations between NO production and p53-related proteins.


Asunto(s)
Apoptosis/fisiología , Daño del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Macrófagos Peritoneales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN/genética , ADN/metabolismo , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Humanos , Hidroxiurea/farmacología , Células K562 , Ratones , Óxido Nítrico , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Quinasas/genética , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/genética
8.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36230784

RESUMEN

Auranofin (Ridaura®, AUF) is a gold complex originally approved as an antirheumatic agent that has emerged as a potential candidate for multiple repurposed therapies. The best-studied anticancer mechanism of AUF is the inhibition of thioredoxin reductase (TrxR). However, a number of reports indicate a more complex and multifaceted mode of action for AUF that could be cancer cell type- and dose-dependent. In this study, we observed that AUF displayed variable cytotoxicity in five triple-negative breast cancer cell lines. Using representative MDA-MB-231 cells treated with moderate and cytotoxic doses of AUF, we evidenced that an AUF-mediated TrxR inhibition alone may not be sufficient to induce cell death. Cytotoxic doses of AUF elicited rapid and drastic intracellular oxidative stress affecting the mitochondria, cytoplasm and nucleus. A "redoxome" proteomics investigation revealed that a short treatment with a cytotoxic dose AUF altered the redox state of a number of cysteines-containing proteins, pointing out that the cell proliferation/cell division/cell cycle and cell-cell adhesion/cytoskeleton structure were the mostly affected pathways. Experimentally, AUF treatment triggered a dose-dependent S-phase arrest and a rapid disintegration of the actin cytoskeleton structure. Our study shows a new spectrum of AUF-induced early effects and should provide novel insights into the complex redox-based mechanisms of this promising anticancer molecule.

9.
Biomedicines ; 9(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916457

RESUMEN

Human CISD2 and mitoNEET are two NEET proteins anchored in the endoplasmic reticulum and mitochondria membranes respectively, with an Fe-S containing domain stretching out in the cytosol. Their cytosolic domains are close in sequence and structure. In the present study, combining cellular and biochemical approaches, we compared both proteins in order to possibly identify specific roles and mechanisms of action in the cell. We show that both proteins exhibit a high intrinsic stability and a sensitivity of their cluster to oxygen. In contrast, they differ in according to expression profiles in tissues and intracellular half-life. The stability of their Fe-S cluster and its ability to be transferred in vitro are affected differently by pH variations in a physiological and pathological range for cytosolic pH. Finally, we question a possible role for CISD2 in cellular Fe-S cluster trafficking. In conclusion, our work highlights unexpected major differences in the cellular and biochemical features between these two structurally close NEET proteins.

10.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34009341

RESUMEN

B-type eukaryotic polymerases contain a [4Fe-4S] cluster in their C-terminus domain, whose role is not fully understood yet. Among them, DNA polymerase delta (Polδ) plays an essential role in chromosomal DNA replication, mostly during lagging strand synthesis. Previous in vitro work suggested that the Fe-S cluster in Polδ is required for efficient binding of the Pol31 subunit, ensuring stability of the Polδ complex. Here, we analyzed the in vivo consequences resulting from an impaired coordination of the Fe-S cluster in Polδ. We show that a single substitution of the very last cysteine coordinating the cluster by a serine is responsible for the generation of massive DNA damage during S phase, leading to checkpoint activation, requirement of homologous recombination for repair, and ultimately to cell death when the repair capacities of the cells are overwhelmed. These data indicate that impaired Fe-S cluster coordination in Polδ is responsible for aberrant replication. More generally, Fe-S in Polδ may be compromised by various stress including anti-cancer drugs. Possible in vivo Polδ Fe-S cluster oxidation and collapse may thus occur, and we speculate this could contribute to induced genomic instability and cell death, comparable to that observed in pol3-13 cells.


Asunto(s)
ADN Polimerasa III , Proteínas de Saccharomyces cerevisiae , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Daño del ADN
11.
Free Radic Biol Med ; 134: 617-629, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30753884

RESUMEN

Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-ß receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-ß in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-ß1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-ß to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation.


Asunto(s)
Fibroblastos/metabolismo , Regulación de la Expresión Génica , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Nucleares/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Fibroblastos/citología , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Óxido Nítrico Sintasa de Tipo II/genética , Transducción de Señal , Transcripción Genética , Factor de Crecimiento Transformador beta/genética
12.
Nitric Oxide ; 19(2): 84-94, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18474260

RESUMEN

The p53R2 ribonucleotide reductase subunit is a p53-inducible protein involved in DNA repair and mitochondrial DNA replication. It has been shown that p53 is activated by nitric oxide, which can damage DNA at high concentrations. This suggests that NO may regulate p53R2 expression through p53 activation. We show here that NO increases p53 protein expression in p53-wt cell lines and upregulates p53R2 at the protein and mRNA levels in a p53-dependent manner. Other p53 target genes, such as DDB2, WAF1 and PCNA, are also induced by NO. Surprisingly, p53R2 is similarly upregulated by NO in two p53-deficient cell lines, showing the existence of p53-independent regulatory mechanisms. Delta Np73, which is overexpressed in many cancers, inhibits the transcriptional activity of p53 and p53 homologs. In p53-wt cells, the Delta Np73alpha isoform inhibits basal and NO-induced p53R2 protein expression. In p53-null cells, it also strongly inhibits p53R2 expression, and represses the enhancer activity of the p53-responsive element present in the p53R2-encoding gene. These results demonstrate that p53R2 expression can be controlled by p53 homologs in the absence of p53, and is downregulated by oncogenic Delta Np73 isoforms. Knocking down p53R2 in p53-wt cells dramatically enhances NO-induced DNA damages, indicating a protective function of the p53R2 ribonucleotide reductase subunit in prevention or repair of NO-mediated genotoxic injury.


Asunto(s)
Proteínas de Ciclo Celular/genética , Óxido Nítrico/farmacología , Ribonucleótido Reductasas/genética , Regulación hacia Arriba/genética , Animales , Proteínas de Ciclo Celular/análisis , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Daño del ADN , Proteínas de Unión al ADN/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos , Ratones , Proteínas Nucleares/fisiología , Sustancias Protectoras , Subunidades de Proteína/genética , ARN Mensajero/análisis , ARN Mensajero/efectos de los fármacos , Ribonucleótido Reductasas/análisis , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Regulación hacia Arriba/efectos de los fármacos
13.
Mol Cancer Ther ; 4(8): 1268-76, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16093443

RESUMEN

Resistance to cytotoxic nucleoside analogues is a major problem in cancer treatment. The cellular mechanisms involved in this phenomenon have been studied for several years, and some factors have been identified. However, this resistance seems to be multifactorial and more studies are needed to gain better insight into this domain. For this purpose, we developed a gemcitabine-resistant cell line (MCF7 1K) from the human mammary adenocarcinoma MCF7 strain by prolonged exposure to gemcitabine in vitro. MCF7 1K cells are highly resistant to gemcitabine (533-fold) and cross-resistance is observed with araC (47-fold), triapine (14-fold), and hydroxyurea (6.7-fold). Quantitative real-time reverse transcription-PCR and Western blot analysis showed an increase in the gene and protein expression of the large subunit of ribonucleotide reductase, R1. Ribonucleotide reductase activity was also significantly increased in the gemcitabine-resistant cells. Study of genomic DNA showed 12-fold increase in R1 gene dosage in MCF7 1K cells. In contrast, the gene and protein expression of the small subunit of ribonucleotide reductase, R2, were not modified in this cell line. These results show that gemcitabine resistance can be associated with genetic modifications of target genes in malignant cells, and suggest that the large subunit of human ribonucleotide reductase is involved in the cellular response to gemcitabine.


Asunto(s)
Adenocarcinoma/enzimología , Antimetabolitos Antineoplásicos/farmacología , Neoplasias de la Mama/enzimología , Desoxicitidina/análogos & derivados , Ribonucleótido Reductasas/metabolismo , Adenocarcinoma/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Regulación hacia Arriba , Gemcitabina
14.
Free Radic Biol Med ; 36(4): 507-16, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14975453

RESUMEN

Nitric oxide displays pro- and anti-tumor activities, prompting further studies to better understand its precise role. Nitric oxide inhibits ribonucleotide reductase (RnR), the limiting enzyme for de novo dNTP synthesis. We report here the first detailed analysis of dNTP variations induced in tumor cells by NO. NO prodrugs induced a depletion in dNTP pools and an activation of the pyrimidine salvage pathway, as did hydroxyurea, the prototypic RnR inhibitor. In the presence of dipyridamole, which blocked salvaged dNTP synthesis, depletion of dNTP pools was also observed in tumor cells cocultured with macrophages expressing the high-output iNOS activity. This effect was rapid, reversible, blocked by NO scavengers, and cGMP independent. It was quantitatively correlated to iNOS activity. In the absence of dipyridamole, NO still induced a decrease in dATP concentration in tumor cells cocultured with macrophages, whereas surprisingly, concentrations of dCTP and dTTP expanded considerably, resulting in a strong imbalance in dNTP pools. NO prodrugs did not cause such an increase in pyrimidine dNTP, suggesting that pyrimidine nucleosides were released by NO-injured macrophages. Altered dNTP levels have been reported to promote mutagenesis and apoptosis. It is suggested that abnormal changes in dNTP pools in tumors might contribute to NO-dependent toxicity.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Óxido Nítrico/farmacología , Espermina/análogos & derivados , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , GMP Cíclico/metabolismo , Desoxicitidina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Óxidos de Nitrógeno , Profármacos/metabolismo , Profármacos/farmacología , Pirimidinas/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Espermina/farmacología
15.
Mol Immunol ; 46(6): 1100-8, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19095306

RESUMEN

Nitric oxide has been shown to induce immunosuppression by inhibiting class II MHC molecule expression and T-lymphocyte proliferation. However, much less is known about the ability of NO to interfere with antigen processing and presentation. So we questioned whether B lymphoma cells exposed to NO could be impaired in their ability to process lysozyme and to stimulate proliferation of a syngeneic T-cell hybridoma. As immunosuppressive pathological conditions are often associated with a pro-oxidative milieu, we also examined the influence of intracellular GSH levels on NO responsiveness. Exposure of GSH-depleted B cells to NO-releasing compounds lowered their capacity to present a reduced and alkylated lysozyme (TAP-HEL), although presentation of a lysozyme-derived peptide was unaffected. Cells with a normal GSH content were protected from this inhibition. Fluid phase endocytosis, protein synthesis and expression of class II molecules remained normal in GSH-depleted cells. However, proteolysis of a dye conjugate of ovalbumin was strongly inhibited, suggesting that protease inhibition might be involved. Cathepsin B activity, which was necessary to TAP-HEL processing, was inhibited by the NO-donors. The inhibition was higher in GSH-depleted cells and reproduced by treatment of A20 B cells by two cathepsin inhibitors. These results show that, in addition to cytostasis and reduction in class II expression, NO-induced immunosuppression could also implicate inhibition of antigen processing under oxidative stress conditions.


Asunto(s)
Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Catepsina B/metabolismo , Glutatión/fisiología , Óxido Nítrico/fisiología , Animales , Presentación de Antígeno/efectos de los fármacos , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/enzimología , Catepsina B/antagonistas & inhibidores , Línea Celular Tumoral , Pollos , Glutatión/deficiencia , Antígenos de Histocompatibilidad Clase II/metabolismo , Hibridomas/inmunología , Ratones , Muramidasa/inmunología , Muramidasa/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Oligopéptidos/inmunología , Oligopéptidos/metabolismo , Ovalbúmina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA