Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G265-G278, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37431575

RESUMEN

Excessive alcohol intake is a major risk factor for pancreatitis, sensitizing the exocrine pancreas to stressors by mechanisms that remain obscure. Impaired autophagy drives nonalcoholic pancreatitis, but the effects of ethanol (EtOH) and alcoholic pancreatitis on autophagy are poorly understood. Here, we find that ethanol reduces autophagosome formation in pancreatic acinar cells, both in a mouse model of alcoholic pancreatitis induced by a combination of EtOH diet and cerulein (a CCK ortholog) and in EtOH+CCK-treated acinar cells (ex vivo model). Ethanol treatments decreased pancreatic level of LC3-II, a key mediator of autophagosome formation. This was caused by ethanol-induced upregulation of ATG4B, a cysteine protease that, cell dependently, regulates the balance between cytosolic LC3-I and membrane-bound LC3-II. We show that ATG4B negatively regulates LC3-II in acinar cells subjected to EtOH treatments. Ethanol raised ATG4B level by inhibiting its degradation, enhanced ATG4B enzymatic activity, and strengthened its interaction with LC3-II. We also found an increase in ATG4B and impaired autophagy in a dissimilar, nonsecretagogue model of alcoholic pancreatitis induced by EtOH plus palmitoleic acid. Adenoviral ATG4B overexpression in acinar cells greatly reduced LC3-II and inhibited autophagy. Furthermore, it aggravated trypsinogen activation and necrosis, mimicking key responses of ex vivo alcoholic pancreatitis. Conversely, shRNA Atg4B knockdown enhanced autophagosome formation and alleviated ethanol-induced acinar cell damage. The results reveal a novel mechanism, whereby ethanol inhibits autophagosome formation and thus sensitizes pancreatitis, and a key role of ATG4B in ethanol's effects on autophagy. Enhancing pancreatic autophagy, particularly by downregulating ATG4B, could be beneficial in mitigating the severity of alcoholic pancreatitis.NEW & NOTEWORTHY Ethanol sensitizes mice and humans to pancreatitis, but the underlying mechanisms remain obscure. Autophagy is important for maintaining pancreatic acinar cell homeostasis, and its impairment drives pancreatitis. This study reveals a novel mechanism, whereby ethanol inhibits autophagosome formation through upregulating ATG4B, a key cysteine protease. ATG4B upregulation inhibits autophagy in acinar cells and aggravates pathological responses of experimental alcoholic pancreatitis. Enhancing pancreatic autophagy, particularly by down-regulating ATG4B, could be beneficial for treatment of alcoholic pancreatitis.


Asunto(s)
Proteasas de Cisteína , Pancreatitis Alcohólica , Animales , Humanos , Ratones , Células Acinares/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Proteasas de Cisteína/metabolismo , Etanol/farmacología , Pancreatitis Alcohólica/genética , Regulación hacia Arriba
3.
Gastroenterology ; 154(3): 689-703, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29074451

RESUMEN

BACKGROUND & AIMS: Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca2+, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. METHODS: Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. RESULTS: Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca2+ overload or through a Ca2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. CONCLUSIONS: In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Páncreas/metabolismo , Pancreatitis/metabolismo , Enfermedad Aguda , Animales , Arginina , Autofagia/efectos de los fármacos , Ácidos y Sales Biliares , Señalización del Calcio , Ceruletida , Deficiencia de Colina/complicaciones , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Etionina , Predisposición Genética a la Enfermedad , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Páncreas/efectos de los fármacos , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Fenotipo , Ratas , Factores de Tiempo , Trehalosa/farmacología
4.
Gastroenterology ; 154(3): 704-718.e10, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29079517

RESUMEN

BACKGROUND & AIMS: Acute pancreatitis is characterized by premature intracellular activation of digestive proteases within pancreatic acini and a consecutive systemic inflammatory response. We investigated how these processes interact during severe pancreatitis in mice. METHODS: Pancreatitis was induced in C57Bl/6 wild-type (control), cathepsin B (CTSB)-knockout, and cathepsin L-knockout mice by partial pancreatic duct ligation with supramaximal caerulein injection, or by repetitive supramaximal caerulein injections alone. Immune cells that infiltrated the pancreas were characterized by immunofluorescence detection of Ly6g, CD206, and CD68. Macrophages were isolated from bone marrow and incubated with bovine trypsinogen or isolated acinar cells; the macrophages were then transferred into pancreatitis control or cathepsin-knockout mice. Activities of proteases and nuclear factor (NF)-κB were determined using fluorogenic substrates and trypsin activity was blocked by nafamostat. Cytokine levels were measured using a cytometric bead array. We performed immunohistochemical analyses to detect trypsinogen, CD206, and CD68 in human chronic pancreatitis (n = 13) and acute necrotizing pancreatitis (n = 15) specimens. RESULTS: Macrophages were the predominant immune cell population that migrated into the pancreas during induction of pancreatitis in control mice. CD68-positive macrophages were found to phagocytose acinar cell components, including zymogen-containing vesicles, in pancreata from mice with pancreatitis, as well as human necrotic pancreatic tissues. Trypsinogen became activated in macrophages cultured with purified trypsinogen or co-cultured with pancreatic acini and in pancreata of mice with pancreatitis; trypsinogen activation required macrophage endocytosis and expression and activity of CTSB, and was sensitive to pH. Activation of trypsinogen in macrophages resulted in translocation of NF-kB and production of inflammatory cytokines; mice without trypsinogen activation (CTSB-knockout mice) in macrophages developed less severe pancreatitis compared with control mice. Transfer of macrophage from control mice to CTSB-knockout mice increased the severity of pancreatitis. Inhibition of trypsin activity in macrophages prevented translocation of NF-κB and production of inflammatory cytokines. CONCLUSIONS: Studying pancreatitis in mice, we found activation of digestive proteases to occur not only in acinar cells but also in macrophages that infiltrate pancreatic tissue. Activation of the proteases in macrophage occurs during endocytosis of zymogen-containing vesicles, and depends on pH and CTSB. This process involves macrophage activation via NF-κB-translocation, and contributes to systemic inflammation and severity of pancreatitis.


Asunto(s)
Catepsina B/metabolismo , Endocitosis , Macrófagos/enzimología , Páncreas/enzimología , Pancreatitis Aguda Necrotizante/enzimología , Tripsinógeno/metabolismo , Traslado Adoptivo , Animales , Catepsina B/deficiencia , Catepsina B/genética , Catepsina L/deficiencia , Catepsina L/genética , Células Cultivadas , Ceruletida , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Predisposición Genética a la Enfermedad , Humanos , Concentración de Iones de Hidrógeno , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Macrófagos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necrosis , Páncreas/inmunología , Páncreas/patología , Pancreatectomía , Pancreatitis Aguda Necrotizante/inducido químicamente , Pancreatitis Aguda Necrotizante/inmunología , Pancreatitis Aguda Necrotizante/patología , Fagocitosis , Fenotipo , Índice de Severidad de la Enfermedad , Factores de Tiempo
5.
Gastroenterology ; 153(5): 1212-1226, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28918190

RESUMEN

Pancreatitis is a common disorder with significant morbidity and mortality, yet little is known about its pathogenesis, and there is no specific or effective treatment. Its development involves dysregulated autophagy and unresolved inflammation, demonstrated by studies in genetic and experimental mouse models. Disease severity depends on whether the inflammatory response resolves or amplifies, leading to multi-organ failure. Dysregulated autophagy might promote the inflammatory response in the pancreas. We discuss the roles of autophagy and inflammation in pancreatitis, mechanisms of deregulation, and connections among disordered pathways. We identify gaps in our knowledge and delineate perspective directions for research. Elucidation of pathogenic mechanisms could lead to new targets for treating or reducing the severity of pancreatitis.


Asunto(s)
Autofagia , Citocinas/inmunología , Mediadores de Inflamación/inmunología , Páncreas/inmunología , Pancreatitis/inmunología , Animales , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/metabolismo , Pancreatitis/patología , Pronóstico , Índice de Severidad de la Enfermedad , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Am J Pathol ; 187(12): 2726-2743, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935577

RESUMEN

Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1ß, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.


Asunto(s)
Células Acinares , Técnicas de Cultivo de Célula , Pancreatitis , Células Acinares/citología , Células Acinares/metabolismo , Cadáver , Células Cultivadas , Humanos , Páncreas/citología , Páncreas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Proteómica
7.
Proc Natl Acad Sci U S A ; 112(45): E6166-74, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26512112

RESUMEN

Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7(Δpan) mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7(Δpan) mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7(Δpan) mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures.


Asunto(s)
Células Acinares/fisiología , Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Homeostasis/fisiología , Proteínas Asociadas a Microtúbulos/deficiencia , Páncreas/citología , Biosíntesis de Proteínas/fisiología , Animales , Proteína 7 Relacionada con la Autofagia , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Microscopía Electrónica de Transmisión
8.
Gut ; 65(8): 1333-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26071131

RESUMEN

OBJECTIVE: Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. DESIGN: We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. RESULTS: MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. CONCLUSIONS: This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease.


Asunto(s)
Células Acinares , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Páncreas , Pancreatitis Aguda Necrotizante , Fosfoproteínas Fosfatasas/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Animales , Autofagia/efectos de los fármacos , Calcio/metabolismo , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacología , Ratones , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Pancreatitis Aguda Necrotizante/inducido químicamente , Pancreatitis Aguda Necrotizante/metabolismo , Pancreatitis Aguda Necrotizante/patología
9.
Curr Opin Gastroenterol ; 32(5): 429-435, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27428704

RESUMEN

PURPOSE OF REVIEW: In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. RECENT FINDINGS: The central physiologic function of the pancreatic acinar cell - to synthesize, store, and secrete digestive enzymes - critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles' disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. SUMMARY: The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis.

10.
Gastroenterology ; 144(6): 1199-209.e4, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23622129

RESUMEN

Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an environment that facilitates the induction and progression of pancreatic diseases. However, little is known about how inflammation, autophagy, and obesity interact to promote exocrine pancreatic disorders. We review the roles of inflammation and autophagy, and their deregulation by obesity, in pancreatic diseases. We discuss the connections among disordered pathways and important areas for future research.


Asunto(s)
Autofagia , Inflamación/complicaciones , Obesidad/complicaciones , Páncreas/patología , Neoplasias Pancreáticas/etiología , Pancreatitis/etiología , Animales , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología , Páncreas/inmunología , Páncreas/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/inmunología , Pancreatitis/metabolismo , Pancreatitis/patología , Factores de Riesgo , Transducción de Señal
11.
J Biol Chem ; 286(10): 7779-7787, 2011 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-21118808

RESUMEN

We recently showed that Nox4 NADPH oxidase is highly expressed in pancreatic ductal adenocarcinoma and that it is activated by growth factors and plays a pro-survival, anti-apoptotic role. Here we investigate the mechanisms through which insulin-like growth factor I and serum (FBS) activate NADPH oxidase in pancreatic cancer (PaCa) cells. We show that in PaCa cells, NADPH oxidase is composed of Nox4 and p22(phox) catalytic subunits, which are both required for NADPH oxidase activity. Insulin-like growth factor I and FBS activate NADPH oxidase through transcriptional up-regulation of p22(phox). This involves activation of the transcription factor NF-κB mediated by Akt kinase. Up-regulation of p22(phox) by the growth factors results in increased Nox4-p22(phox) complex formation and activation of NADPH oxidase. This mechanism is different from that for receptor-induced activation of phagocytic NADPH oxidase, which is mediated by phosphorylation of its regulatory subunits. Up-regulation of p22(phox) represents a novel pro-survival mechanism through which growth factors and Akt inhibit apoptosis in PaCa cells.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , NADPH Oxidasas/biosíntesis , Neoplasias Pancreáticas/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-akt/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 303(9): G993-G1003, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22961802

RESUMEN

Acute pancreatitis is an inflammatory disease of the exocrine pancreas that carries considerable morbidity and mortality; its pathophysiology remains poorly understood. Recent findings from experimental models and genetically altered mice summarized in this review reveal that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis and that one cause of autophagy impairment is defective function of lysosomes. We propose that the lysosomal/autophagic dysfunction is a key initiating event in pancreatitis and a converging point of multiple deranged pathways. There is strong evidence supporting this hypothesis. Investigation of autophagy in pancreatitis has just started, and many questions about the "upstream" mechanisms mediating the lysosomal/autophagic dysfunction and the "downstream" links to pancreatitis pathologies need to be explored. Answers to these questions should provide insight into novel molecular targets and therapeutic strategies for treatment of pancreatitis.


Asunto(s)
Células Acinares/metabolismo , Autofagia/fisiología , Lisosomas , Pancreatitis Aguda Necrotizante , Animales , Catepsinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Lisosomas/enzimología , Lisosomas/patología , Ratones , Páncreas/metabolismo , Páncreas/patología , Pancreatitis Aguda Necrotizante/metabolismo , Pancreatitis Aguda Necrotizante/patología
13.
Gastroenterology ; 140(3): 987-97, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21111739

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress responses (collectively known the unfolded protein response [UPR]) have important roles in several human disorders, but their contribution to alcoholic pancreatitis is not known. We investigated the role of X-box binding protein 1 (XBP1), a UPR regulator, in prevention of alcohol-induced ER stress in the exocrine pancreas. METHODS: Wild-type and Xbp1(+/-) mice were fed control or ethanol diets for 4 weeks. Pancreatic tissue samples were then examined by light and electron microscopy to determine pancreatic alterations; UPR regulators were analyzed biochemically. RESULTS: In wild-type mice, ethanol activated a UPR, increasing pancreatic levels of XBP1 and XBP1 targets such as protein disulfide isomerase (PDI). In these mice, pancreatic damage was minor. In ethanol-fed Xbp1(+/-) mice, XBP1 and PDI levels were significantly lower than in ethanol-fed wild-type mice. The combination of XBP1 deficiency and ethanol feeding reduced expression of regulators of ER function and the up-regulation of proapoptotic signals. Moreover, ethanol feeding induced oxidation of PDI, which might compromise PDI-mediated disulfide bond formation during ER protein folding. In ethanol-fed Xbp1(+/-) mice, ER stress was associated with disorganized and dilated ER, loss of zymogen granules, accumulation of autophagic vacuoles, and increased acinar cell death. CONCLUSIONS: Long-term ethanol feeding causes oxidative ER stress, which activates a UPR and increases XBP1 levels and activity. A defective UPR due to XBP1 deficiency results in ER dysfunction and acinar cell pathology.


Asunto(s)
Retículo Endoplásmico/metabolismo , Páncreas Exocrino/metabolismo , Pancreatitis Alcohólica/metabolismo , Estrés Fisiológico , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/patología , Etanol , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Páncreas Exocrino/patología , Pancreatitis Alcohólica/genética , Pancreatitis Alcohólica/patología , Pancreatitis Alcohólica/prevención & control , Proteína Disulfuro Isomerasas/metabolismo , Ratas , Ratas Wistar , Factores de Transcripción del Factor Regulador X , Técnicas de Cultivo de Tejidos , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la X-Box
14.
J Gastroenterol Hepatol ; 27 Suppl 2: 27-32, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22320913

RESUMEN

Recent findings from our group, obtained on experimental in vivo and ex vivo models of pancreatitis, reveal that this disease causes a profound dysfunction of key cellular organelles, lysosomes and mitochondria. We found that autophagy, the main cellular degradative, lysosome-driven process, is activated but also impaired in acute pancreatitis because of its' inefficient progression/resolution (flux) resulting from defective function of lysosomes. One mechanism underlying the lysosomal dysfunction in pancreatitis is abnormal processing (maturation) and activation of cathepsins, major lysosomal hydrolases; another is a decrease in pancreatic levels of key lysosomal membrane proteins LAMP-1 and LAMP-2. Our data indicate that lysosomal dysfunction plays an important initiating role in pancreatitis pathobiology. The impaired autophagy mediates vacuole accumulation in acinar cells; furthermore, the abnormal maturation and activation of cathepsins leads to increase in intra-acinar trypsin, the hallmark of pancreatitis; and LAMP-2 deficiency causes inflammation and acinar cell necrosis. Thus, the autophagic and lysosomal dysfunctions mediate key pathologic responses of pancreatitis. On the other hand, we showed that pancreatitis causes acinar cell mitochondria depolarization, mediated by the permeability transition pore (PTP). Genetic (via deletion of cyclophilin D) inactivation of PTP prevents mitochondrial depolarization and greatly ameliorates the pathologic responses of pancreatitis. Further, our data suggest that mitochondrial damage, by stimulating autophagy, increases the demand for efficient lysosomal degradation and therefore aggravates the pathologic consequences of lysosomal dysfunction. Thus, the combined autophagic, lysosomal and mitochondrial dysfunctions are key to the pathogenesis of pancreatitis.


Asunto(s)
Autofagia , Páncreas/patología , Pancreatitis/patología , Animales , Catepsinas/metabolismo , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Páncreas/metabolismo , Páncreas/fisiopatología , Pancreatitis/metabolismo , Pancreatitis/fisiopatología
15.
Cell Mol Gastroenterol Hepatol ; 13(2): 599-622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34610499

RESUMEN

BACKGROUND: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS: We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS: Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS: The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.


Asunto(s)
Páncreas , Pancreatitis , Células Acinares/metabolismo , Animales , Autofagosomas , Autofagia , Ratones , Pancreatitis/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/farmacología
17.
Alcohol Clin Exp Res ; 35(5): 830-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21284675

RESUMEN

Alcohol abuse is one of the most common causes of pancreatitis. The risk of developing alcohol-induced pancreatitis is related to the amount and duration of drinking. However, only a small portion of heavy drinkers develop disease, indicating that other factors (genetic, environmental, or dietary) contribute to disease initiation. Epidemiologic studies suggest roles for cigarette smoking and dietary factors in the development of alcoholic pancreatitis. The mechanisms underlying alcoholic pancreatitis are starting to be understood. Studies from animal models reveal that alcohol sensitizes the pancreas to key pathobiologic processes that are involved in pancreatitis. Current studies are focussed on the mechanisms responsible for the sensitizing effect of alcohol; recent findings reveal disordering of key cellular organelles including endoplasmic reticulum, mitochondria, and lysosomes. As our understanding of alcohol's effects continue to advance to the level of molecular mechanisms, insights into potential therapeutic strategies will emerge providing opportunities for clinical benefit.


Asunto(s)
Alcoholismo/patología , Pancreatitis Alcohólica/patología , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/patología , Alcoholismo/complicaciones , Alcoholismo/metabolismo , Animales , Muerte Celular/fisiología , Humanos , Pancreatitis Alcohólica/etiología , Pancreatitis Alcohólica/metabolismo , Transporte de Proteínas/fisiología
18.
J Clin Invest ; 131(15)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34128834

RESUMEN

Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.


Asunto(s)
Células Acinares/metabolismo , Colesterol/metabolismo , Manosafosfatos/metabolismo , Páncreas Exocrino/metabolismo , Pancreatitis/metabolismo , Células Acinares/patología , Animales , Colesterol/genética , Modelos Animales de Enfermedad , Humanos , Manosafosfatos/genética , Ratones , Ratones Noqueados , Páncreas Exocrino/patología , Pancreatitis/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
19.
Exp Cell Res ; 315(11): 1975-89, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19331832

RESUMEN

Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (DeltaPsim) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced DeltaPsim loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced DeltaPsim loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.


Asunto(s)
Mitocondrias/metabolismo , Pancreatitis Aguda Necrotizante/metabolismo , Pancreatitis Aguda Necrotizante/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , Proteínas de la Cápside , Caspasa 3/metabolismo , Ceruletida/toxicidad , Citocromos c/metabolismo , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas In Vitro , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Necrosis , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Pancreatitis Aguda Necrotizante/genética , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sincalida/farmacología , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
20.
Autophagy ; 16(11): 2084-2097, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31942816

RESUMEN

Pancreatitis is a common, sometimes fatal, disease of exocrine pancreas, initiated by damaged acinar cells. Recent studies implicate disordered macroautophagy/autophagy in pancreatitis pathogenesis. ATG8/LC3 protein is critical for autophagosome formation and a widely used marker of autophagic vacuoles. Transgenic GFP-LC3 mice are a valuable tool to investigate autophagy ; however, comparison of homeostatic and disease responses between GFP-LC3 and wild-type (WT) mice has not been done. We examined the effects of GFP-LC3 expression on autophagy, acinar cell function, and experimental pancreatitis. Unexpectedly, GFP-LC3 expression markedly increased endogenous LC3-II level in pancreas, caused by downregulation of ATG4B, the protease that deconjugates/delipidates LC3-II. By contrast, GFP-LC3 expression had lesser or no effect on autophagy in liver, lung and spleen. Autophagic flux analysis showed that autophagosome formation in GFP-LC3 acinar cells increased 3-fold but was not fully counterbalanced by increased autophagic degradation. Acinar cell (ex vivo) pancreatitis inhibited autophagic flux in WT and essentially blocked it in GFP-LC3 cells. In vivo pancreatitis caused autophagy impairment in WT mice, manifest by upregulation of LC3-II and SQSTM1/p62, increased number and size of autophagic vacuoles, and decreased level of TFEB, all of which were exacerbated in GFP-LC3 mice. GFP-LC3 expression affected key pancreatitis responses; most dramatically, it worsened increases in serum AMY (amylase), a diagnostic marker of acute pancreatitis, in several mouse models. The results emphasize physiological importance of autophagy for acinar cell function, demonstrate organ-specific effects of GFP-LC3 expression, and indicate that application of GFP-LC3 mice in disease models should be done with caution.Abbreviations: AP: acute pancreatitis; Arg-AP: L-arginine-induced acute pancreatitis; ATG: autophagy-related (protein); AVs: autophagic vacuoles; CCK: cholecystokinin-8; CDE: choline-deficient, D,L-ethionine supplemented diet; CER: caerulein (ortholog of CCK); CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ER: endoplasmic reticulum; LAMP: lysosomal-associated membrane protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; TEM: transmission electron microscopy; TFEB: transcription factor EB; ZG: zymogen granule(s).


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Páncreas Exocrino/metabolismo , Células Acinares/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Transgénicos , Páncreas Exocrino/patología , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA