Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 127(Pt 3): 599-608, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24357723

RESUMEN

Sharp-1 is a basic helix-loop-helix (bHLH) transcriptional repressor that is involved in a number of cellular processes. Our previous studies have demonstrated that Sharp-1 is a negative regulator of skeletal myogenesis and it blocks differentiation of muscle precursor cells by modulating the activity of MyoD. In order to understand its role in pre- and post-natal myogenesis, we assessed skeletal muscle development and freeze-injury-induced regeneration in Sharp-1-deficient mice. We show that embryonic skeletal muscle development is not impaired in the absence of Sharp-1; however, post-natally, the regenerative capacity is compromised. Although the initial phases of injury-induced regeneration proceed normally in Sharp-1(-/-) mice, during late stages, the mutant muscle exhibits necrotic fibers, calcium deposits and fibrosis. TGF-ß expression, as well as levels of phosphorylated Smad2 and Smad3, are sustained in the mutant tissue and treatment with decorin, which blocks TGF-ß signaling, improves the histopathology of Sharp-1(-/-) injured muscles. In vitro, Sharp-1 associates with Smad3, and its overexpression inhibits TGF-ß- and Smad3-mediated expression of extracellular matrix genes in myofibroblasts. These results demonstrate that Sharp-1 regulates muscle regenerative capacity, at least in part, by modulation of TGF-ß signaling.


Asunto(s)
Músculo Esquelético/metabolismo , Regeneración/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculo Esquelético/crecimiento & desarrollo , Miofibroblastos/metabolismo , Transducción de Señal , Proteína smad3 , Factores de Transcripción/biosíntesis , Factor de Crecimiento Transformador beta/biosíntesis
2.
J Cell Biol ; 177(4): 647-57, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17502421

RESUMEN

Satellite cells play a critical role in skeletal muscle regeneration in response to injury. Notch signaling is vital for satellite cell activation and myogenic precursor cell expansion but inhibits myogenic differentiation. Thus, precise spatial and temporal regulation of Notch activity is necessary for efficient muscle regeneration. We report that the basic helix-loop-helix transcription factor Stra13 modulates Notch signaling in regenerating muscle. Upon injury, Stra13(-/-) mice exhibit increased cellular proliferation, elevated Notch signaling, a striking regeneration defect characterized by degenerated myotubes, increased mononuclear cells, and fibrosis. Stra13(-/-) primary myoblasts also exhibit enhanced Notch activity, increased proliferation, and defective differentiation. Inhibition of Notch signaling ex vivo and in vivo ameliorates the phenotype of Stra13(-/-) mutants. We demonstrate in vitro that Stra13 antagonizes Notch activity and reverses the Notch-imposed inhibition of myogenesis. Thus, Stra13 plays an important role in postnatal myogenesis by attenuating Notch signaling to reduce myoblast proliferation and promote myogenic differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Homeodominio/fisiología , Receptores Notch/antagonistas & inhibidores , Receptores Notch/fisiología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Línea Celular , Proliferación Celular , Células Cultivadas , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Transducción de Señal/genética
3.
EMBO Rep ; 10(1): 79-86, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19029947

RESUMEN

SHARP1, a basic helix-loop-helix transcription factor, is expressed in many cell types; however, the mechanisms by which it regulates cellular differentiation remain largely unknown. Here, we show that SHARP1 negatively regulates adipogenesis. Although expression of the early marker CCAAT/enhancer binding protein beta (C/EBPbeta) is not altered, its crucial downstream targets C/EBPalpha and peroxisome proliferator-activated receptor gamma (PPARgamma) are downregulated by SHARP1. Protein interaction studies confirm that SHARP1 interacts with and inhibits the transcriptional activity of both C/EBPbeta and C/EBPalpha, and enhances the association of C/EBPbeta with histone deacetylase 1 (HDAC1). Consistently, in SHARP1-expressing cells, HDAC1 and the histone methyltransferase G9a are retained at the C/EBP regulatory sites on the C/EBPalpha and PPARgamma2 promoters during differentiation, resulting in inhibition of their expression. Interestingly, treatment with troglitazone results in displacement of HDAC1 and G9a, and rescues the differentiation defect of SHARP1-overexpressing cells. Our data indicate that SHARP1 inhibits adipogenesis through the regulation of C/EBP activity, which is essential for PPARgamma-ligand-dependent displacement of co-repressors from adipogenic promoters.


Asunto(s)
Adipogénesis , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
4.
Methods Mol Biol ; 383: 311-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18217694

RESUMEN

A balance between proliferation and apoptosis is crucial for cellular homeostasis, and its disruption leading to enhanced cellular proliferation and uncontrolled growth are hallmarks of cancer. Genetic manipulation in the mouse offers a powerful approach to delineate the roles of genes in carcinogenesis and determine the molecular and cellular basis of their function. Mouse embryonic fibroblast cells derived from mice that are disrupted for tumor suppressors or oncogenes have served as an invaluable tool to study altered growth properties of cells and identify regulatory molecules involved in neoplastic transformation. In this chapter, protocols for isolation of mouse embryonic fibroblast cells from midgestation mouse embryos and their applications to study altered growth properties by growth curves and colony formation assays are provided. Methods to analyze cell cycle profiles by flow cytometry using bromodeoxyuridine and propidium iodide staining were also provided, entry of cells in S-phase by [3H] thymidine incorporation studies, and the analysis of cells in mitosis by staining with antiphospho-H3 antibodies are also provided.


Asunto(s)
Ciclo Celular , Línea Celular , Proliferación Celular , Fibroblastos , Animales , Separación Celular , Ensayo de Unidades Formadoras de Colonias , Embrión de Mamíferos/citología , Citometría de Flujo , Ratones , Índice Mitótico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA