RESUMEN
Melioidosis, caused by Burkholderia pseudomallei, is a rare but potentially fatal bacterial disease endemic to tropical and subtropical regions worldwide. It is typically acquired through contact with contaminated soil or fresh water. Before this investigation, B. pseudomallei was not known to have been isolated from the environment in the continental United States. Here, we report on three patients living in the same Mississippi Gulf Coast county who presented with melioidosis within a 3-year period. They were infected by the same Western Hemisphere B. pseudomallei strain that was discovered in three environmental samples collected from the property of one of the patients. These findings indicate local acquisition of melioidosis from the environment in the Mississippi Gulf Coast region.
Asunto(s)
Burkholderia pseudomallei , Microbiología Ambiental , Melioidosis , Humanos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/epidemiología , Melioidosis/microbiología , Estados Unidos/epidemiologíaRESUMEN
Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.
Asunto(s)
Aromaterapia/efectos adversos , Burkholderia pseudomallei/aislamiento & purificación , Brotes de Enfermedades , Melioidosis/epidemiología , Aerosoles , Encéfalo/microbiología , Encéfalo/patología , Burkholderia pseudomallei/genética , COVID-19/complicaciones , Preescolar , Resultado Fatal , Femenino , Genoma Bacteriano , Humanos , Pulmón/microbiología , Pulmón/patología , Masculino , Melioidosis/complicaciones , Persona de Mediana Edad , Filogenia , Choque Séptico/microbiología , Estados Unidos/epidemiologíaRESUMEN
Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action. The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.
Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , Prevalencia , Vigilancia en Salud Pública/métodos , Estados Unidos/epidemiologíaRESUMEN
Phylogenetic analysis of a clinical isolate associated with subclinical Burkholderia pseudomallei infection revealed probable exposure in the British Virgin Islands, where reported infections are limited. Clinicians should consider this geographic distribution when evaluating possible infection among persons with compatible travel history.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Islas Vírgenes Británicas , Burkholderia pseudomallei/genética , Humanos , Melioidosis/diagnóstico , Melioidosis/epidemiología , Filogenia , ViajeRESUMEN
We report an analysis of the genomic diversity of isolates of Burkholderia pseudomallei, the cause of melioidosis, recovered in Colombia from routine surveillance during 2016-2017. B. pseudomallei appears genetically diverse, suggesting it is well established and has spread across the region.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Burkholderia pseudomallei/genética , Colombia/epidemiología , Genómica , Humanos , Melioidosis/epidemiología , Tipificación de Secuencias MultilocusRESUMEN
During a surveillance study of patients in a long-term care facility and the affiliated acute care hospital in the United States, we identified a Clostridioides difficile strain related to the epidemic PCR ribotype (RT) 027 strain associated with hospital outbreaks of severe disease. Fifteen patients were infected with this strain, characterized as restriction endonuclease analysis group DQ and RT591. Like RT027, DQ/RT591 contained genes for toxin B and binary toxin CDT and a tcdC gene of identical sequence. Whole-genome sequencing and multilocus sequence typing showed that DQ/RT591 is a member of the same multilocus sequence typing clade 2 as RT027 but in a separate cluster. DQ/RT591 produced a similar cytopathic effect as RT027 but showed delayed toxin production in vitro. DQ/RT591 was susceptible to moxifloxacin but highly resistant to clindamycin. Continued surveillance is warranted for this clindamycin-resistant strain that is related to the fluoroquinolone-resistant epidemic RT027 strain.
Asunto(s)
Clostridioides difficile/aislamiento & purificación , Enterocolitis Seudomembranosa/epidemiología , Cuidados a Largo Plazo , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Clindamicina/farmacología , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Farmacorresistencia Bacteriana , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterocolitis Seudomembranosa/microbiología , Heces/microbiología , Femenino , Humanos , Illinois/epidemiología , Masculino , Ohio/epidemiología , Reacción en Cadena de la Polimerasa , Prohibitinas , Secuenciación Completa del GenomaRESUMEN
Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response.
Asunto(s)
Carbunco/prevención & control , Bacillus anthracis/aislamiento & purificación , Bacillus anthracis/genética , Bioterrorismo , Defensa Civil , Genoma Bacteriano , Humanos , Salud Pública , Reacción en Cadena en Tiempo Real de la Polimerasa , Estados Unidos , Secuenciación Completa del GenomaRESUMEN
To our knowledge, environmental isolation of Burkholderia pseudomallei, the causative agent of melioidosis, from the continental United States has not been reported. We report a case of melioidosis in a Texas resident. Genomic analysis indicated that the isolate groups with B. pseudomallei isolates from patients in the same region, suggesting possible endemicity to this region.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Burkholderia pseudomallei/genética , Genómica , Humanos , Melioidosis/diagnóstico , Texas/epidemiología , Viaje , Estados UnidosRESUMEN
The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (Chryseobacterium arachidiradicis, Chryseobacterium bovis, Chryseobacterium caeni, Chryseobacterium hispanicum, Chryseobacterium hominis, Chryseobacterium hungaricum,, Chryseobacterium pallidum and Chryseobacterium zeae) to the genus Epilithonimonas and eleven (Chryseobacterium anthropi, Chryseobacterium antarcticum, Chryseobacterium carnis, Chryseobacterium chaponense, Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum, Chryseobacterium palustre, Chryseobacterium solincola, Chryseobacterium treverense and Chryseobacterium yonginense) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov.
Asunto(s)
Chryseobacterium/clasificación , Filogenia , Aminoácidos/química , Extinción BiológicaRESUMEN
We report 2 cases of melioidosis in women with diabetes admitted to an emergency department in the US Virgin Islands during October 2017. These cases emerged after Hurricanes Irma and Maria and did not have a definitively identified source. Poor outcomes were observed when septicemia and pulmonary involvement were present.
Asunto(s)
Tormentas Ciclónicas , Melioidosis/epidemiología , Desastres Naturales , Anciano de 80 o más Años , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Burkholderia pseudomallei/efectos de los fármacos , Femenino , Humanos , Melioidosis/diagnóstico , Melioidosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Islas Virgenes de los Estados Unidos/epidemiologíaRESUMEN
Nosocomial infections of Elizabethkingia species can have fatal outcomes if not identified and treated properly. The current diagnostic tools available require culture and isolation, which can extend the reporting time and delay treatment. Using comparative genomics, we developed an efficient multiplex real-time PCR for the simultaneous detection of all known species of Elizabethkingia, as well as differentiating the two most commonly reported species, Elizabethkingia anophelis and Elizabethkingia meningoseptica.
Asunto(s)
Flavobacteriaceae/clasificación , Flavobacteriaceae/aislamiento & purificación , Genómica , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , ADN Bacteriano/aislamiento & purificación , Infecciones por Flavobacteriaceae/microbiología , Genoma Bacteriano , Humanos , Filogenia , Sensibilidad y Especificidad , Análisis de Secuencia de ADNRESUMEN
The taxonomic position of strain 15-057AT, an acidophilic actinobacterium isolated from the bronchial lavage of an 80-year-old male, was determined using a polyphasic approach incorporating morphological, phenotypic, chemotaxonomic and genomic analyses. Pairwise 16S rRNA gene sequence similarities calculated using the GGDC web server between strain 15-057AT and its closest phylogenetic neighbours, Streptomyces griseoplanus NBRC 12779T and Streptacidiphilus oryzae TH49T, were 99.7 and 97.6â%, respectively. The G+C content of isolate 15-057AT was determined to be 72.6 mol%. DNA-DNA relatedness and average nucleotide identity between isolate 15-057AT and Streptomyces griseoplanus DSM 40009T were 29.2±2.5â% and 85.97â%, respectively. Chemotaxonomic features of isolate 15-057AT were consistent with its assignment within the genus Streptacidiphilus: the whole-cell hydrolysate contained ll-diaminopimelic acid as the diagnostic diamino acid and glucose, mannose and ribose as cell-wall sugars; the major menaquinone was MK9(H8); the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycophospholipid, aminoglycophospholipid and an unknown lipid; the major fatty acids were anteiso-C15â:â0 and iso-C16â:â0. Phenotypic and morphological traits distinguished isolate 15-057AT from its closest phylogenetic neighbours. The results of our taxonomic analyses showed that strain 15-057AT represents a novel species within the evolutionary radiation of the genus Streptacidiphilus, for which the name Streptacidiphilus bronchialis sp. nov. is proposed. The type strain is 15-057AT (=DSM 106435T=ATCC BAA-2934T).
Asunto(s)
Líquido del Lavado Bronquioalveolar/microbiología , Filogenia , Streptomyces/clasificación , Streptomycetaceae/clasificación , Anciano de 80 o más Años , Técnicas de Tipificación Bacteriana , Composición de Base , Ciprofloxacina , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Farmacorresistencia Bacteriana , Ácidos Grasos/química , Humanos , Masculino , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomycetaceae/aislamiento & purificación , TennesseeRESUMEN
Two unusual catalase-negative, Gram-stain-positive, Vagococcus-like isolates that were referred to the CDC Streptococcus Laboratory for identification are described. Strain SS1994T was isolated from ground beef and strain SS1995T was isolated from a human foot wound. Comparative 16S rRNA gene sequence analysis of isolates SS1994T and SS1995T against Vagococcus type strain sequences supported their inclusion in the genus Vagococcus. Strain SS1994T showed high sequence similarity (>97.0â%) to the two most recently proposed species, Vagococcus martis (99.2â%) and Vagococcus teuberi (99.0â%) followed by Vagococcus penaei (98.8â%), strain SS1995T (98.6â%), Vagococcus carniphilus (98.0â%), Vagococcus acidifermentans (98.0â%) and Vagococcus fluvialis (97.9â%). The 16S rRNA gene sequence of strain SS1995T was most similar to V. penaei (99.1â%), followed by SS1994T (98.6â%), V. martis (98.4â%), V. teuberi (98.1â%), V. acidifermentans (97.8â%), and both V. carniphilus and V. fluvialis (97.5â%). A polyphasic taxonomic study using conventional biochemical and the rapid ID 32 STREP system, MALDI-TOF MS, cell fatty acid analysis, pairwise sequence comparisons of the 16S rRNA, rpoA, rpoB, pheS and groL genes, and comparative core and whole genome sequence analyses revealed that strains SS1994T and SS1995T were two novel Vagococcus species. The novel taxonomic status of the two isolates was confirmed with core genome phylogeny, average nucleotide identity <84â% and in silico DNA-DNA hybridization <28â% to any other Vagococcus species. The names Vagococcusbubulae SS1994T=(CCUG 70831T=LMG 30164T) and Vagococcusvulneris SS1995T=(CCUG 70832T=LMG 30165T) are proposed.
Asunto(s)
Enterococcaceae/clasificación , Pie/microbiología , Filogenia , Carne Roja/microbiología , Heridas y Lesiones/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bovinos , ADN Bacteriano/genética , Enterococcaceae/aislamiento & purificación , Ácidos Grasos/química , Genes Bacterianos , Humanos , Masculino , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The bacterium Burkholderia thailandensis, a member of the Burkholderia pseudomallei complex, is generally considered nonpathogenic; however, on rare occasions, B. thailandensis infections have been reported. We describe a clinical isolate of B. thailandensis, BtAR2017, recovered from a patient with an infected wound in Arkansas, USA, in 2017.
Asunto(s)
Infecciones por Burkholderia/microbiología , Burkholderia/clasificación , Genoma Bacteriano/genética , Infección de Heridas/microbiología , Adulto , Arkansas , Técnicas de Tipificación Bacteriana , Burkholderia/genética , Infecciones por Burkholderia/diagnóstico , Femenino , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Infección de Heridas/diagnósticoRESUMEN
The hydroxycinnamates (HCAs) ferulate and p-coumarate are among the most abundant constituents of lignin, and their degradation by bacteria is an essential step in the remineralization of vascular plant material. Here, we investigate the catabolism of these two HCAs by the marine bacterium Sagittula stellata E-37, a member of the roseobacter lineage with lignolytic potential. Bacterial degradation of HCAs is often initiated by the activity of a hydroxycinnamoyl-coenzyme A (hydroxycinnamoyl-CoA) synthase. Genome analysis of S. stellata revealed the presence of two feruloyl-CoA (fcs) synthase homologs, an unusual occurrence among characterized HCA degraders. In order to elucidate the role of these homologs in HCA catabolism, fcs-1 and fcs-2 were disrupted using insertional mutagenesis, yielding both single and double fcs mutants. Growth on p-coumarate was abolished in the fcs double mutant, whereas maximum cell yield on ferulate was only 2% of that of the wild type. Interestingly, the single mutants demonstrated opposing phenotypes, where the fcs-1 mutant showed impaired growth (extended lag and â¼60% of wild-type rate) on p-coumarate, and the fcs-2 mutant showed impaired growth (extended lag and â¼20% of wild-type rate) on ferulate, pointing to distinct but overlapping roles of the encoded fcs homologs, with fcs-1 primarily dedicated to p-coumarate utilization and fcs-2 playing a dominant role in ferulate utilization. Finally, a tripartite ATP-independent periplasmic (TRAP) family transporter was found to be required for growth on both HCAs. These findings provide evidence for functional redundancy in the degradation of HCAs in S. stellata E-37 and offer important insight into the genetic complexity of aromatic compound degradation in bacteria.IMPORTANCE Hydroxycinnamates (HCAs) are essential components of lignin and are involved in various plant functions, including defense. In nature, microbial degradation of HCAs is influential to global carbon cycling. HCA degradation pathways are also of industrial relevance, as microbial transformation of the HCA, ferulate, can generate vanillin, a valuable flavoring compound. Yet, surprisingly little is known of the genetics underlying bacterial HCA degradation. Here, we make comparisons to previously characterized bacterial HCA degraders and use a genetic approach to characterize genes involved in catabolism and uptake of HCAs in the environmentally relevant marine bacterium Sagittula stellata We provide evidence of overlapping substrate specificity between HCA degradation pathways and uptake proteins. We conclude that S. stellata is uniquely poised to utilize HCAs found in the complex mixtures of plant-derived compounds in nature. This strategy may be common among marine bacteria residing in lignin-rich coastal waters and has potential relevance to biotechnology sectors.
Asunto(s)
Ácidos Cumáricos/metabolismo , Roseobacter/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Lignina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas , Roseobacter/enzimología , Roseobacter/genética , Roseobacter/crecimiento & desarrolloRESUMEN
The genus Elizabethkingia is genetically heterogeneous, and the phenotypic similarities between recognized species pose challenges in correct identification of clinically derived isolates. In addition to the type species Elizabethkingia meningoseptica, and more recently proposed Elizabethkingia miricola, Elizabethkingia anophelis and Elizabethkingia endophytica, four genomospecies have long been recognized. By comparing historic DNA-DNA hybridization results with whole genome sequences, optical maps, and MALDI-TOF mass spectra on a large and diverse set of strains, we propose a comprehensive taxonomic revision of this genus. Genomospecies 1 and 2 contain the type strains E. anophelis and E. miricola, respectively. Genomospecies 3 and 4 are herein proposed as novel species named as Elizabethkingia bruuniana sp. nov. (type strain, G0146T = DSM 2975T = CCUG 69503T = CIP 111191T) and Elizabethkingia ursingii sp. nov. (type strain, G4122T = DSM 2974T = CCUG 69496T = CIP 111192T), respectively. Finally, the new species Elizabethkingia occulta sp. nov. (type strain G4070T = DSM 2976T = CCUG 69505T = CIP 111193T), is proposed.
Asunto(s)
Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Genoma Bacteriano , Genómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Secuenciación Completa del Genoma , Técnicas de Tipificación Bacteriana , Biología Computacional/métodos , Código de Barras del ADN Taxonómico , ADN Bacteriano , Evolución Molecular , Flavobacteriaceae/química , Genómica/métodos , Hibridación de Ácido Nucleico , Fenotipo , FilogeniaRESUMEN
The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America.
Asunto(s)
Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/genética , Melioidosis/epidemiología , Melioidosis/microbiología , Filogenia , Filogeografía , Burkholderia pseudomallei/aislamiento & purificación , Genoma Bacteriano , Genómica/métodos , Salud Global , Humanos , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido SimpleRESUMEN
Eighty Gram-negative bacilli (54 Enterobacteriaceae and 26 nonfermenting Gram-negative bacilli) obtained from multiple institutions in the United States were distributed in a blinded manner to seven testing laboratories to compare their performance of a test for detection of carbapenemase production, the Carba NP test. The Carba NP test was performed by all laboratories, following the Clinical and Laboratory Standards Institute (CLSI) procedure. Site-versus-site comparisons demonstrated a high level of consistency for the Carba NP assay, with just 3/21 site comparisons yielding a difference in sensitivity (P < 0.05). Previously described limitations with blaOXA-48-like carbapenemases and blaOXA carbapenemases associated with Acinetobacter baumannii were noted. Based on these data, we demonstrate that the Carba NP test, when implemented with the standardized CLSI methodology, provides reproducible results across multiple sites for detection of carbapenemases.
Asunto(s)
Proteínas Bacterianas/análisis , Técnicas Bacteriológicas/métodos , Enterobacteriaceae/enzimología , beta-Lactamasas/análisis , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estados UnidosRESUMEN
Three isolates of a previously reported novel catalase-negative, Gram-stain-positive, coccoid, alpha-haemolytic, Streptococcus species that were associated with meningoencephalitis in naïve weanling mice were further evaluated to confirm their taxonomic status and to determine additional phenotypic and molecular characteristics. Comparative 16S rRNA gene sequence analysis showed nearly identical intra-species sequence similarity (≥99.9â%), and revealed the closest phylogenetically related species, Streptococcus acidominimus and Streptococcuscuniculi, with 97.0 and 97.5â% sequence similarity, respectively. The rpoB, sodA and recN genes were identical for the three isolates and were 87.6, 85.7 and 82.5â% similar to S. acidominimus and 89.7, 86.2 and 80.7â% similar to S. cuniculi, respectively. In silico DNA-DNA hybridization analyses of mouse isolate 12-5202T against S. acidominimus CCUG 27296T and S. cuniculi CCUG 65085T produced estimated values of 26.4 and 25.7â% relatedness, and the calculated average nucleotide identity values were 81.9 and 81.7, respectively. These data confirm the taxonomic status of 12-5202T as a distinct Streptococcus species, and we formally propose the type strain, Streptococcusazizii 12-5202T (=CCUG 69378T=DSM 103678T). The genome of Streptococcus azizii sp. nov. 12-5202T contains 2062 total genes with a size of 2.34 Mbp, and an average G+C content of 42.76 mol%.
Asunto(s)
Meningoencefalitis/microbiología , Ratones/microbiología , Filogenia , Streptococcus/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Femenino , Genes Bacterianos , Masculino , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptococcus/genética , Streptococcus/aislamiento & purificaciónRESUMEN
A facultatively anaerobic, Gram-stain-positive bacterium, designated ETRF1T, was found in faecal material of a timber rattlesnake (Crotalus horridus). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Enterococcus. The 16S rRNA gene sequence of strain ETRF1T showed >97â% similarity to that of the type strains of Enterococcus rotai, E. caccae, E. silesiacus, E haemoperoxidus, E. ureasiticus, E. moraviensis, E. plantarum, E. quebecensis, E. ureilyticus, E. termitis, E. rivorum and E. faecalis. The organism could be distinguished from these 12 phylogenetically related enterococci using conventional biochemical testing, the Rapid ID32 Strep system, comparative pheS and rpoA gene sequence analysis, and comparative whole genome sequence analysis. The estimated in silico DNA-DNA hybridization values were <70â%, and average nucleotide identity values were <96â%, when compared to these 12 species, further validating that ETRF1T represents a unique species within the genus Enterococcus. On the basis of these analyses, strain ETRF1T (=CCUG 65857T=LMG 28312T) is proposed as the type strain of a novel species, Enterococcus crotali sp. nov.