Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(2): 284-294, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37991420

RESUMEN

There is considerable interest in therapeutically engaging human γδ T cells. However, due to the unique TCRs of human γδ T cells, studies from animal models have provided limited directly applicable insights, and human γδ T cells from key immunological tissues remain poorly characterized. In this study, we investigated γδ T cells from human spleen tissue. Compared to blood, where Vδ2+Vγ9+ T cells are the dominant subset, splenic γδ T cells included a variety of TCR types, with Vδ1+ T cells typically being the most frequent. Intracellular cytokine staining revealed that IFN-γ was produced by a substantial fraction of splenic γδ T cells, IL-17A by a small fraction, and IL-4 was minimal. Primary splenic γδ T cells frequently expressed NKG2D (NK group 2 member D) and CD16, whereas expression of DNAM-1 (DNAX accessory molecule 1), CD28, PD-1, TIGIT, and CD94 varied according to subset, and there was generally little expression of natural cytotoxicity receptors, TIM-3, LAG-3, or killer Ig-like receptors. In vitro expansion was associated with marked changes in expression of these activating and inhibitory receptors. Analysis of functional responses of spleen-derived Vδ2+Vγ9+, Vδ1+Vγ9+, and Vδ1+Vγ9- T cell lines to recombinant butyrophilin BTN2A1 and BTN3A1 demonstrated that both Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells were capable of responding to the extracellular domain of BTN2A1, whereas the addition of BTN3A1 only markedly enhanced the responses of Vδ2+Vγ9+ T cells. Conversely, Vδ1+Vγ9+ T cells appeared more responsive than Vδ2+Vγ9+ T cells to TCR-independent NKG2D stimulation. Thus, despite shared recognition of BTN2A1, differential effects of BTN3A1 and coreceptors may segregate target cell responses of Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Bazo , Animales , Humanos , Bazo/metabolismo , Butirofilinas , Subfamilia K de Receptores Similares a Lectina de Células NK , Linfocitos T , Antígenos CD
2.
Immunology ; 172(4): 627-640, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736328

RESUMEN

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.


Asunto(s)
Antígenos CD1d , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Inmunoterapia Adoptiva , Linfoma de Células B , Células T Asesinas Naturales , Antígenos CD1d/metabolismo , Antígenos CD1d/inmunología , Humanos , Animales , Células T Asesinas Naturales/inmunología , Inmunoterapia Adoptiva/métodos , Herpesvirus Humano 4/inmunología , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Ratones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Ratones SCID , Ratones Endogámicos NOD
3.
PLoS Pathog ; 18(4): e1010453, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35472072

RESUMEN

Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.


Asunto(s)
Linfocitos B , Linfoma de Burkitt , Herpesvirus Humano 4 , Factores Reguladores del Interferón , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Linfoma de Burkitt/virología , Herpesvirus Humano 4/metabolismo , Humanos , Factores Reguladores del Interferón/metabolismo , Fenotipo , Proteínas Virales/metabolismo
4.
PLoS Pathog ; 16(2): e1008365, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059024

RESUMEN

Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.


Asunto(s)
Linfocitos B/metabolismo , Factores de Transcripción NFATC/genética , Animales , Linfocitos B/virología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr , Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidad , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Activación Viral , Latencia del Virus
5.
J Immunol ; 205(1): 272-281, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32444392

RESUMEN

Acute graft-versus-host disease (GVHD) is a frequent complication of hematopoietic transplantation, yet patient risk stratification remains difficult, and prognostic biomarkers to guide early clinical interventions are lacking. We developed an approach to evaluate the potential of human T cells from hematopoietic grafts to produce GVHD. Nonconditioned NBSGW mice transplanted with titrated doses of human bone marrow developed GVHD that was characterized by widespread lymphocyte infiltration and organ pathology. Interestingly, GVHD was not an inevitable outcome in our system and was influenced by transplant dose, inflammatory status of the host, and type of graft. Mice that went on to develop GVHD showed signs of rapid proliferation in the human T cell population during the first 1-3 wk posttransplant and had elevated human IFN-γ in plasma that correlated negatively with the expansion of the human hematopoietic compartment. Furthermore, these early T cell activation metrics were predictive of GVHD onset 3-6 wk before phenotypic pathology. These results reveal an early window of susceptibility for pathological T cell activation following hematopoietic transplantation that is not simply determined by transient inflammation resulting from conditioning-associated damage and show that T cell parameters during this window can serve as prognostic biomarkers for risk of later GVHD development.


Asunto(s)
Enfermedad Injerto contra Huésped/diagnóstico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Linfocitos T/inmunología , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/inmunología , Humanos , Interferón gamma/sangre , Interferón gamma/inmunología , Activación de Linfocitos , Masculino , Ratones , Periodo Posoperatorio , Cultivo Primario de Células , Pronóstico , Factores de Tiempo , Quimera por Trasplante/inmunología , Acondicionamiento Pretrasplante/efectos adversos , Trasplante Heterólogo/efectos adversos
6.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132242

RESUMEN

Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (Δ3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic Δ3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. Δ3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. Δ3A and WT tumors expressed equivalent levels of EBNA2 and p16, but Δ3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, Δ3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus Δ3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (Δ3A) and wild-type EBV. The Δ3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, Δ3A tumors had less LMP1. Our analysis suggested that Δ3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Sangre Fetal/metabolismo , Herpesvirus Humano 4/genética , Linfoma/virología , Animales , Linfocitos B/virología , Transformación Celular Viral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Herpesvirus Humano 4/fisiología , Humanos , Células Asesinas Naturales/inmunología , Linfoma/genética , Linfoma/patología , Linfoma de Células B , Ratones , Mutagénesis Sitio-Dirigida , Análisis de Secuencia de ARN , Eliminación de Secuencia , Linfocitos T/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Latencia del Virus/genética
7.
PLoS Pathog ; 14(8): e1007221, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30125329

RESUMEN

EBV causes human B-cell lymphomas and transforms B cells in vitro. EBNA3C, an EBV protein expressed in latently-infected cells, is required for EBV transformation of B cells in vitro. While EBNA3C undoubtedly plays a key role in allowing EBV to successfully infect B cells, many EBV+ lymphomas do not express this protein, suggesting that cellular mutations and/or signaling pathways may obviate the need for EBNA3C in vivo under certain conditions. EBNA3C collaborates with EBNA3A to repress expression of the CDKN2A-encoded tumor suppressors, p16 and p14, and EBNA3C-deleted EBV transforms B cells containing a p16 germline mutation in vitro. Here we have examined the phenotype of an EBNAC-deleted virus (Δ3C EBV) in a cord blood-humanized mouse model (CBH). We found that the Δ3C virus induced fewer lymphomas (occurring with a delayed onset) in comparison to the wild-type (WT) control virus, although a subset (10/26) of Δ3C-infected CBH mice eventually developed invasive diffuse large B cell lymphomas with type III latency. Both WT and Δ3C viruses induced B-cell lymphomas with restricted B-cell populations and heterogeneous T-cell infiltration. In comparison to WT-infected tumors, Δ3C-infected tumors had greatly increased p16 levels, and RNA-seq analysis revealed a decrease in E2F target gene expression. However, we found that Δ3C-infected tumors expressed c-Myc and cyclin E at similar levels compared to WT-infected tumors, allowing cells to at least partially bypass p16-mediated cell cycle inhibition. The anti-apoptotic proteins, BCL2 and IRF4, were expressed in Δ3C-infected tumors, likely helping cells avoid c-Myc-induced apoptosis. Unexpectedly, Δ3C-infected tumors had increased T-cell infiltration, increased expression of T-cell chemokines (CCL5, CCL20 and CCL22) and enhanced type I interferon response in comparison to WT tumors. Together, these results reveal that EBNA3C contributes to, but is not essential for, EBV-induced lymphomagenesis in CBH mice, and suggest potentially important immunologic roles of EBNA3C in vivo.


Asunto(s)
Transformación Celular Viral/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/fisiología , Linfoma de Células B/virología , Latencia del Virus/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Infecciones por Virus de Epstein-Barr/genética , Sangre Fetal/inmunología , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos
8.
J Immunol ; 201(8): 2452-2461, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30171164

RESUMEN

By binding to its ligand ICAM-1, LFA-1 is known to mediate both adhesion and costimulatory signaling for T cell activation. The constitutively high LFA-1 cell surface expression of invariant NKT (iNKT) cells has been shown to be responsible for their distinctive tissue homing and residency within ICAM-rich endothelial vessels. However, the functional impact of LFA-1 on the activation of iNKT cells and other innate T lymphocyte subsets has remained largely unexplored. In particular, it is not clear whether LFA-1 contributes to innate-like pathways of T cell activation, such as IFN-γ secretion in response to IL-12. Using a recombinant ICAM-1-Fc fusion protein to stimulate human iNKT cells in the absence of APCs, we show that LFA-1 engagement enhances their IL-12-driven IFN-γ production. Surprisingly, exposure to high densities of ICAM-1 was also sufficient to activate iNKT cell cytokine secretion independently of IL-12 and associated JAK/STAT signaling. LFA-1 engagement induced elevated cytoplasmic Ca2+ and rapid ERK phosphorylation in iNKT cells, and the resulting IFN-γ secretion was dependent on both of these pathways. Analysis of freshly isolated human PBMC samples revealed that a fraction of lymphocytes that showed elevated LFA-1 cell surface expression produced IFN-γ in response to plate-bound ICAM-1-Fc. A majority of the responding cells were T cells, with the remainder NK cells. The responding T cells included iNKT cells, MAIT cells, and Vδ2+ γδ T cells. These results delineate a novel integrin-mediated pathway of IFN-γ secretion that is a shared feature of innate lymphocytes.


Asunto(s)
Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Células T Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Adhesión Celular , Movimiento Celular , Células Cultivadas , Células Clonales , Humanos , Inmunidad Innata , Interferón gamma/metabolismo , Activación de Linfocitos , Masculino , Unión Proteica
9.
Adv Exp Med Biol ; 1224: 63-77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32036605

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes that circulate in blood and also reside in mucosal tissues. Blood MAIT cells are typically highly Th1-polarized, while those in mucosal tissues include both Th1- and Th17-polarized subsets. MAIT cells mount cytokine and cytolytic responses as a result of T cell receptor (TCR)-mediated recognition of microbially derived metabolites of riboflavin (vitamin B2) presented by the MR1 antigen-presenting molecule. Additionally, MAIT cells can be activated by inflammatory cytokines produced by antigen-presenting cells (APCs) that have been exposed to pathogen-associated molecular patterns (PAMPs). Since the antigenic metabolites of riboflavin recognized by MAIT cells are produced by many microorganisms, including pathogens as well as non-pathogenic colonists, the inflammatory state of the tissue may be a key feature that determines the nature of MAIT cell responses. Under normal conditions where inflammatory cytokines are not produced, MAIT cell responses to microbial metabolites may simply serve to help maintain a healthy balance between epithelial cells and microbial colonists. In contrast, in situations where inflammatory cytokines are produced (e.g., pathogenic infection or damage to epithelial tissue), MAIT cell responses may be more potently pro-inflammatory. Since chronic inflammation and microbial drivers are associated with tumorigenesis and also trigger MAIT cell responses, the nexus of MAIT cells, local microbiomes, and epithelial cells may play an important role in epithelial carcinogenesis. This chapter reviews current information about MAIT cells and epithelial tumors, where the balance of evidence suggests that enrichment of Th17-polarized MAIT cells at tumor sites associates with poor patient prognosis. Studying the role of MAIT cells and their interactions with resident microbes offers a novel view of the biology of epithelial tumor progression and may ultimately lead to new approaches to target MAIT cells clinically.


Asunto(s)
Células Epiteliales/patología , Células T Invariantes Asociadas a Mucosa , Neoplasias/patología , Citocinas/inmunología , Humanos , Células T Invariantes Asociadas a Mucosa/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/inmunología , Neoplasias/tratamiento farmacológico , Pronóstico , Receptores de Antígenos de Linfocitos T/inmunología
10.
Immunity ; 33(6): 853-62, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21167756

RESUMEN

CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 Å resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-ß1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A' pocket, aided by a unique exit portal underneath the α1 helix. Most striking was an open F' pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.


Asunto(s)
Antígenos Bacterianos/química , Antígenos CD1/química , Glicoproteínas/química , Modelos Inmunológicos , Mycobacterium tuberculosis/inmunología , Conformación Proteica , Presentación de Antígeno , Variación Antigénica , Antígenos Bacterianos/inmunología , Antígenos CD1/inmunología , Clonación Molecular , Biología Computacional , Cristalización , Glicoproteínas/inmunología , Antígenos de Histocompatibilidad/metabolismo , Humanos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Rayos X
11.
Breast Cancer Res ; 20(1): 111, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208917

RESUMEN

BACKGROUND: Antimicrobial T cells play key roles in the disease progression of cancers arising in mucosal epithelial tissues, such as the colon. However, little is known about microbe-reactive T cells within human breast ducts and whether these impact breast carcinogenesis. METHODS: Epithelial ducts were isolated from primary human breast tissue samples, and the associated T lymphocytes were characterized using flow cytometric analysis. Functional assays were performed to determine T-cell cytokine secretion in response to bacterially treated human breast carcinoma cells. RESULTS: We show that human breast epithelial ducts contain mucosal associated invariant T (MAIT) cells, an innate T-cell population that recognizes specific bacterial metabolites presented by nonclassical MR1 antigen-presenting molecules. The MAIT cell population from breast ducts resembled that of peripheral blood in its innate lymphocyte phenotype (i.e., CD161, PLZF, and interleukin [IL]-18 receptor coexpression), but the breast duct MAIT cell population had a distinct T-cell receptor Vß use profile and was markedly enriched for IL-17-producing cells compared with blood MAIT cells. Breast carcinoma cells that had been exposed to Escherichia coli activated MAIT cells in an MR1-dependent manner. However, whereas phorbol 12-myristate 13-acetate/ionomycin stimulation induced the production of both interferon-γ and IL-17 by breast duct MAIT cells, bacterially exposed breast carcinoma cells elicited a strongly IL-17-biased response. Breast carcinoma cells also showed upregulated expression of natural killer group 2 member D (NKG2D) ligands compared with primary breast epithelial cells, and the NKG2D receptor contributed to MAIT cell activation by the carcinoma cells. CONCLUSIONS: These results demonstrate that MAIT cells from human breast ducts mediate a selective T-helper 17 cell response to human breast carcinoma cells that were exposed to E. coli. Thus, cues from the breast microbiome and the expression of stress-associated ligands by neoplastic breast duct epithelial cells may shape MAIT cell responses during breast carcinogenesis.


Asunto(s)
Neoplasias de la Mama/inmunología , Células Epiteliales/inmunología , Interleucina-17/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Mama/citología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/microbiología , Línea Celular Tumoral , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Células Epiteliales/metabolismo , Escherichia coli/inmunología , Escherichia coli/fisiología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Activación de Linfocitos/inmunología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo
12.
PLoS Pathog ; 12(5): e1005642, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27186886

RESUMEN

Epstein-Barr virus (EBV) infection causes B cell lymphomas in humanized mouse models and contributes to a variety of different types of human lymphomas. T cells directed against viral antigens play a critical role in controlling EBV infection, and EBV-positive lymphomas are particularly common in immunocompromised hosts. We previously showed that EBV induces B cell lymphomas with high frequency in a cord blood-humanized mouse model in which EBV-infected human cord blood is injected intraperitoneally into NOD/LtSz-scid/IL2Rγnull (NSG) mice. Since our former studies showed that it is possible for T cells to control the tumors in another NSG mouse model engrafted with both human fetal CD34+ cells and human thymus and liver, here we investigated whether monoclonal antibodies that block the T cell inhibitory receptors, PD-1 and CTLA-4, enhance the ability of cord blood T cells to control the outgrowth of EBV-induced lymphomas in the cord-blood humanized mouse model. We demonstrate that EBV-infected lymphoma cells in this model express both the PD-L1 and PD-L2 inhibitory ligands for the PD-1 receptor, and that T cells express the PD-1 and CTLA-4 receptors. Furthermore, we show that the combination of CTLA-4 and PD-1 blockade strikingly reduces the size of lymphomas induced by a lytic EBV strain (M81) in this model, and that this anti-tumor effect requires T cells. PD-1/CTLA-4 blockade markedly increases EBV-specific T cell responses, and is associated with enhanced tumor infiltration by CD4+ and CD8+ T cells. In addition, PD-1/CTLA-4 blockade decreases the number of both latently, and lytically, EBV-infected B cells. These results indicate that PD-1/CTLA-4 blockade enhances the ability of cord blood T cells to control outgrowth of EBV-induced lymphomas, and suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-induced diseases in humans.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Linfoma de Células B/inmunología , Linfoma de Células B/virología , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Antígeno CTLA-4/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Infecciones por Virus de Epstein-Barr/inmunología , Sangre Fetal , Citometría de Flujo , Herpesvirus Humano 4 , Humanos , Linfoma de Células B/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID
13.
J Immunol ; 197(6): 2455-64, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27534556

RESUMEN

The cytokine IL-1ß plays a central role in inflammatory responses that are initiated by microbial challenges, as well as in those that are due to endogenous processes (often called sterile inflammation). IL-1ß secretion that occurs independently of microbial stimulation is typically associated with the presence of endogenous alarmins, such as extracellular ATP (an indicator of cytopathic damage). In this study, we show that IL-2-activated human invariant NKT (iNKT) cells stimulate the secretion of IL-1ß protein by human peripheral blood monocytes in a manner that requires neither the presence of microbial compounds nor signaling through the extracellular ATP receptor P2X7 Monocyte IL-1ß production was specifically induced by iNKT cells, because similarly activated polyclonal autologous T cells did not have this effect. Secretion of IL-1ß protein occurred rapidly (within 3-4 h) and required cell contact between the iNKT cells and monocytes. Similar to IL-1ß production induced by TLR stimulation, the iNKT-induced pathway appeared to entail a two-step process involving NF-κB signaling and IL1B gene transcription, as well as assembly of the NLRP3 inflammasome and activation of caspase-1. However, in contrast to the classical inflammasome-mediated pathway of IL-1ß production, activation of monocytes via P2X7 was dispensable for iNKT-induced IL-1ß secretion, and potassium efflux was not required. Moreover, the iNKT-induced effect involved caspase-8 activity, yet it induced little monocyte death. These results suggest that IL-2-activated human iNKT cells induce monocytes to produce IL-1ß through a distinctive pathway that does not require the presence of microbial danger signals or alarmins associated with cytopathic damage.


Asunto(s)
Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Monocitos/inmunología , Células T Asesinas Naturales/inmunología , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Alarminas/inmunología , Caspasa 1/metabolismo , Citocinas/metabolismo , Humanos , Inflamasomas , Interleucina-1beta/genética , Interleucina-2/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Células T Asesinas Naturales/efectos de los fármacos , Receptores Purinérgicos P2X7/inmunología
14.
EMBO J ; 31(8): 2047-59, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22395072

RESUMEN

Invariant Natural Killer T (iNKT) cells use highly restricted αß T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A' pocket. Binding of the iNKT TCR requires a 7-Å displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3ß and Jß segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.


Asunto(s)
Presentación de Antígeno , Antígenos CD1d/metabolismo , Lisofosfolípidos/metabolismo , Células T Asesinas Naturales/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos CD1d/inmunología , Cristalografía por Rayos X , Humanos , Lisofosfolípidos/inmunología , Modelos Moleculares , Conformación Proteica , Receptores de Antígenos de Linfocitos T/inmunología
15.
Immunogenetics ; 68(8): 611-22, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27393663

RESUMEN

The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets-CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells-may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the "lipidome," these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.


Asunto(s)
Antígenos CD1/inmunología , Autoantígenos/sangre , Lípidos/inmunología , Activación de Linfocitos/inmunología , Células T Asesinas Naturales/inmunología , Estrés Oxidativo/inmunología , Subgrupos de Linfocitos T/inmunología , Autoantígenos/inmunología , Humanos
16.
J Cell Biochem ; 116(2): 320-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25211367

RESUMEN

In addition to osteoblast lineage cells, the TNF-like factor receptor activator of NF-κB ligand (RANKL) is expressed in both B and T cells and may play a role in bone resorption. Rankl gene (Tnfsf11) expression in mouse T cells is mediated through multiple distal elements marked by increased transcription factor occupancy, histone tail acetylation, and RNA polymerase II recruitment. Little is known, however, of the regulation of human TNFSF11 in T cells. Accordingly, we examined the consequence of T cell activation on the expression of this factor both in Jurkat cells and in primary human T cells. We then explored the mechanism of this regulation by scanning over 400 kb of DNA surrounding the TNFSF11 locus for regulatory enhancers using ChIP-chip analysis. Histone H3/H4 acetylation enrichment identified putative regulatory regions located between -170 and -220 kb upstream of the human TNFSF11 TSS that we designated the human T cell control region (hTCCR). This region showed high sequence conservation with the mouse TCCR. Inhibition of MEK1/2 by U0126 resulted in decreased RANKL expression suggesting that stimulation through MEK1/2 was a prerequisite. ChIP-chip analysis also revealed that c-FOS was recruited to the hTCCR as well. Importantly, both the human TNFSF11 D5a/b (RLD5a/b) enhancer and segments of the hTCCR mediated robust inducible reporter activity following TCR activation. Finally, SNPs implicated in diseases characterized by dysregulated BMD co-localized to the hTCCR region. We conclude that the hTCCR region contains a cell-selective set of enhancers that plays an integral role in the transcriptional regulation of the TNFSF11 gene in human T cells.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Ligando RANK/genética , Linfocitos T/metabolismo , Densidad Ósea/genética , Células Cultivadas , Activación Enzimática , Humanos , Células Jurkat , Activación de Linfocitos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
PLoS Biol ; 10(10): e1001412, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23109910

RESUMEN

CD1d-mediated presentation of glycolipid antigens to T cells is capable of initiating powerful immune responses that can have a beneficial impact on many diseases. Molecular analyses have recently detailed the lipid antigen recognition strategies utilized by the invariant Vα24-Jα18 TCR rearrangements of iNKT cells, which comprise a subset of the human CD1d-restricted T cell population. In contrast, little is known about how lipid antigens are recognized by functionally distinct CD1d-restricted T cells bearing different TCRα chain rearrangements. Here we present crystallographic and biophysical analyses of α-galactosylceramide (α-GalCer) recognition by a human CD1d-restricted TCR that utilizes a Vα3.1-Jα18 rearrangement and displays a more restricted specificity for α-linked glycolipids than that of iNKT TCRs. Despite having sequence divergence in the CDR1α and CDR2α loops, this TCR employs a convergent recognition strategy to engage CD1d/αGalCer, with a binding affinity (∼2 µM) almost identical to that of an iNKT TCR used in this study. The CDR3α loop, similar in sequence to iNKT-TCRs, engages CD1d/αGalCer in a similar position as that seen with iNKT-TCRs, however fewer actual contacts are made. Instead, the CDR1α loop contributes important contacts to CD1d/αGalCer, with an emphasis on the 4'OH of the galactose headgroup. This is consistent with the inability of Vα24- T cells to respond to α-glucosylceramide, which differs from αGalCer in the position of the 4'OH. These data illustrate how fine specificity for a lipid containing α-linked galactose is achieved by a TCR structurally distinct from that of iNKT cells.


Asunto(s)
Antígenos CD1d/química , Galactosilceramidas/química , Secuencia de Aminoácidos , Presentación de Antígeno , Antígenos CD1d/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Galactosilceramidas/metabolismo , Humanos , Datos de Secuencia Molecular , Células T Asesinas Naturales/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
18.
iScience ; 27(5): 109775, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38726371

RESUMEN

The transition of naive T lymphocytes into antigenically activated effector cells is associated with a metabolic shift from oxidative phosphorylation to aerobic glycolysis. This shift facilitates production of the key anti-tumor cytokine interferon (IFN)-γ; however, an associated loss of mitochondrial efficiency in effector T cells ultimately limits anti-tumor immunity. Memory phenotype (MP) T cells are a newly recognized subset that arises through homeostatic activation signals following hematopoietic transplantation. We show here that human CD4+ MP cell differentiation is associated with increased glycolytic and oxidative metabolic activity, but MP cells retain less compromised mitochondria compared to effector CD4+ T cells, and their IFN-γ response is less dependent on glucose and more reliant on glutamine. MP cells also produced IFN-γ more efficiently in response to weak T cell receptor (TCR) agonism than effectors and mediated stronger responses to transformed B cells. MP cells may thus be particularly well suited to carry out sustained immunosurveillance against neoplastic cells.

19.
Biol Blood Marrow Transplant ; 19(9): 1310-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23806772

RESUMEN

Chronic graft-versus-host disease (cGVHD) is a significant roadblock to long-term hematopoietic stem cell (HSC) transplantation success. Effective treatments for cGVHD have been difficult to develop, in part because of a paucity of animal models that recapitulate the multiorgan pathologies observed in clinical cGVHD. Here we present an analysis of the pathology that occurs in immunodeficient mice engrafted with human fetal HSCs and implanted with fragments of human fetal thymus and liver. Starting at time points generally later than 100 days post-transplantation, the mice developed signs of illness, including multiorgan cellular infiltrates containing human T cells, B cells, and macrophages; fibrosis in sites such as lungs and liver; and thickened skin with alopecia. Experimental manipulations that delayed or reduced the efficiency of the HSC engraftment did not affect the timing or progression of disease manifestations, suggesting that pathology in this model is driven more by factors associated with the engrafted human thymic organoid. Disease progression was typically accompanied by extensive fibrosis and degradation of the thymic organoid, and there was an inverse correlation of disease severity with the frequency of FoxP3(+) thymocytes. Hence, the human thymic tissue may contribute T cells with pathogenic potential, but the generation of regulatory T cells in the thymic organoid may help to control these cells before pathology resembling cGVHD eventually develops. This model thus provides a new system to investigate disease pathophysiology relating to human thymic events and to evaluate treatment strategies to combat multiorgan fibrotic pathology produced by human immune cells.


Asunto(s)
Trasplante de Tejido Fetal/métodos , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/inmunología , Timo/trasplante , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Enfermedad Injerto contra Huésped/patología , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Trasplante Heterólogo
20.
J Virol ; 86(15): 7976-87, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623780

RESUMEN

Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/metabolismo , Linfoma/metabolismo , Linfoma/virología , Mutación , Transactivadores/biosíntesis , Animales , Modelos Animales de Enfermedad , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Linfoma/genética , Linfoma/patología , Ratones , Ratones Mutantes , Linfocitos T/metabolismo , Linfocitos T/patología , Linfocitos T/virología , Transactivadores/genética , Latencia del Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA