Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 23(4)2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670070

RESUMEN

Measurements of the zeta potential of solid heterogeneous supports are important for preparation of metal supported catalysts and for shaping zeolites into extrudates. In the current work, different types of heterogeneous support materials such as SiO2, Al2O3, and a range of beta zeolites of different silica- to-alumina ratio were analysed. It was observed that parameters such as temperature, pH and acidity significantly affect the zeta potential. In several instances, depending on the materials' acidity and microstructure, maxima in zeta potential were observed. The solid materials were thoroughly characterized using XRD, SEM, EDX, TEM, nitrogen physisorption, Al-NMR and FTIR with pyridine before zeta potential measurements.


Asunto(s)
Ácidos/química , Electricidad Estática , Temperatura , Zeolitas/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Óxidos/química , Difracción de Rayos X
2.
J Sep Sci ; 39(8): 1524-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26899536

RESUMEN

A novel approach is proposed to modify the porous structure and surface properties of the polymers used in solid-phase extraction. The approach involves soaking in water or acetone, followed by freezing in liquid nitrogen (77.4 K) and was employed for two polymeric materials: Amberlite XAD-7 and Amberlite XAD-16. Variations in the surface properties of the adsorbents were justified by the action of acetone and water as solvents affecting the textural and other characteristic of the materials. The initial and treated adsorbents were used in extraction of explosive nitramines from aqueous samples. The performed modifications of the polymer texture allow us to increase the recovery rate as compared with the initial adsorbents. The results were justified by the swelling of fragments of the polymers and by the additional process of sorption of nitramines. The results indicate that polymeric adsorbents can be easily modified by the soaking/freezing process and the materials can be achieved that prove usefulness for the effective separation of explosive nitramines from aqueous samples.

3.
J Chem Phys ; 142(3): 034502, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25612715

RESUMEN

The evaporation/condensation coefficient (ß) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ωB97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/ωB97X-D). It is shown that ß depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy of solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of ß for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/Tc < 0.8) or slightly larger (at T/Tc > 0.8) than the values of ß calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of ß by the MD FF methods, except at temperatures close to the critical temperature.


Asunto(s)
Alcanos/química , Gases/química , Simulación de Dinámica Molecular , Transición de Fase , Presión , Teoría Cuántica , Solventes/química , Temperatura
4.
J Sep Sci ; 38(14): 2488-95, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25914305

RESUMEN

New series of carbon/silica gel nanocomposites, carbosils, prepared by the carbonization of starch bound to silica gel, and carbosils additionally silylated with octadecyldimethylchlorosilane were synthesized. These materials were applied as adsorbents in the solid-phase extraction of explosive nitrate esters and nitroaromatics from aqueous solutions. The adsorption and desorption steps were evaluated separately. It was found that both the molecular properties of explosives (dipole moments, orbital energies, solvation effects) and textural properties influenced by carbon deposits or octadecyl moieties have a large impact on the recovery rates. It was shown that the composites with moderate content of carbon deposits or with the highest amounts of carbon deposits and additionally silylated can be used as materials tailored for extraction of explosives from the aqueous solutions.

5.
Chemistry ; 19(28): 9351-7, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23740856

RESUMEN

Understanding of both the textural and functionality changes occurring during (mesoporous) polysaccharide carbonisation at the molecular level provides a deeper insight into the whole spectrum of material properties, from chemical activity to pore shape and surface energy, which is crucial for the successful application of carbonaceous materials in adsorption, catalysis and chromatography. Obtained information will help to identify the most appropriate applications of the carbonaceous material generated during torrefaction and different types of pyrolysis processes and therefore will be important for the development of cost- and energy-efficient zero-waste biorefineries. The presented approach is informative and semi-quantitative with the potential to be extended to the formation of other biomass-derived carbonaceous materials.


Asunto(s)
Almidón/química , Biomasa , Calor , Modelos Químicos , Porosidad
6.
Langmuir ; 29(13): 4303-14, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23480384

RESUMEN

The interfacial and temperature behavior of n-decane bound to weakly hydrated nanosilica A-400 (initial, heated, or compacted) or silica gel Si-60 was studied using low-temperature (1)H NMR spectroscopy applied to static samples that allowed us to observe signals only of mobile decane and unfrozen water molecules. For deeper insight into the phenomena studied, interactions of n-decane, 1-decanol, and water with a set of nanosilicas and silica gels were analyzed using DSC and thermoporometry. Both NMR and DSC results demonstrated that during heating of frozen samples at a heating rate of 5 K/min a portion of decane or decanol remained frozen at temperature higher than the freezing point of bulk liquid (Tf). For decane and decanol adsorbed onto silica gels Si-40, Si-60, and Si-100, the number, position, and intensity of freezing and melting peaks observed in the DSC thermograms over the 170-300 K range during cooling and heating of samples depended on the pore size distribution of silicas as well as on the amounts and type of adsorbates. The position of the main freezing peak of decane for all samples was close to Tf because the alkane amount was greater than the pore volume; i.e., a fraction of decane was bulk liquid. According to (1)H NMR data, a portion of decane, which was in a quasi-crystalline solid state characterized by fast molecular exchange (i.e., short transverse relaxation time) and not observed in the spectra, was greater than a portion of decane frozen at temperatures close to Tf during cooling that appears in the DSC endotherms of heated samples.

7.
Phys Chem Chem Phys ; 14(47): 16267-78, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23132464

RESUMEN

Adsorption of myoglobin (Mb), bovine serum albumin (BSA) and γ-globulin (GG) onto activated carbons (ACs) with different pore size distributions, and poly(vinyl alcohol) (PVA) monolithic cryogels containing AC particles was studied. The highest initial rate of Mb adsorption was observed for AC having the largest specific surface area (1939 m(2) g(-1)) and pore volume (1.82 cm(3) g(-1)). The adsorption kinetics of proteins was characterized by a bimodal shape of the distribution f(D) function of an effective diffusion coefficient. Adsorption isotherms of Mb and GG were of Freundlich type within the studied range of equilibrium concentrations (10-150 µg mL(-1)). The distributions of free energy of protein adsorption were bimodal and reflected both interactions with carbon surfaces and self-association of proteins. Adsorbed amounts of Mb were the highest among the proteins studied (up to 700 mg g(-1) carbon), which was attributed to the higher fraction of pores accessible for Mb. Incorporation of carbon particles into PVA-based cryogel resulted in macroporous monolithic composite materials (AC-PVA) exhibiting good flow-through properties. Scanning electron microscopy of the composites showed macroporous aggregates of carbon particles held together by films and bridges of PVA. The rates of adsorption and adsorbed amounts of proteins on AC-PVA were reduced compared to the pristine carbon and depended on the carbon content in the composites. Nevertheless, adsorption of Mb on AC-PVA took place even in the presence of 500-fold higher concentration of BSA. This indicated a possibility of Mb clearance from blood plasma using the PVA-carbon monoliths.


Asunto(s)
Carbón Orgánico/química , Criogeles/química , Mioglobina/aislamiento & purificación , Alcohol Polivinílico/química , Albúmina Sérica Bovina/aislamiento & purificación , gammaglobulinas/aislamiento & purificación , Adsorción , Animales , Bovinos , Caballos , Porosidad
8.
Phys Chem Chem Phys ; 13(10): 4476-85, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21258685

RESUMEN

Quasi-elastic light scattering (QELS) and quartz crystal microbalance (QCM) non-equilibrium and equilibrium studies of competitive interactions of pairs of polymers and proteins with fumed silica and ceramic coatings deposited on QCM crystals show complex interfacial behaviour. The effects observed depend on the adsorption sequence of co-adsorbates, their chemical structure and the morphology and chemical structure of the adsorbent. The equilibrium adsorption and dynamics of interactions of macromolecules with bare adsorbent surface and surface covered with pre-adsorbed polymer or protein, are compared in terms of the distribution functions of the Gibbs free energy of adsorption, which varied from -25 kJ mol(-1) on a bare surface to almost 0 kJ mol(-1) on a polymer or protein coated surface.


Asunto(s)
Proteínas/química , Adsorción , Animales , Bovinos , Humanos , Cinética , Luz , Modelos Moleculares , Nanoestructuras/química , Polímeros/química , Conformación Proteica , Dispersión de Radiación , Dióxido de Silicio/química , Propiedades de Superficie
9.
J Colloid Interface Sci ; 588: 70-83, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33388588

RESUMEN

HYPOTHESIS: Various nanosilica characteristics depend on hydrophobization strongly affecting interfacial phenomena. Is it possible to prepare hydrophilic samples with hydrophobic silica (AM1) alone and in blends with hydrophilic one (A-300)? It can be done with addition of a small amount of water to the powders which then are mechanically treated. EXPERIMENTS: Nanosilicas were characterized using adsorption, desorption, microscopic, spectroscopic, and quantum chemistry methods. 1H NMR spectroscopy and cryoporometry were applied to AM1 and AM1/A-300 blends wetted and mechanically treated. Wetted blends were studied with additions of n-decane and chloroform-d. FINDINGS: The powders wetted at h = 0.3-3.0 g of water per gram of dry solids have increased bulk density. Samples are in gel-like state at h = 4-5 g/g. Water interaction energy with nanoparticles nonmonotonically depends on h (maximal at h = 3 g/g). Upon mechanical treatment of wetted blends (h < 1.5 g/g), separated AM1 structures are absent. At greater h values, blend reorganization occurs to form AM1 aggregates covered by A-300 shells. Organics can displace water from mesovoids toward narrower pores inaccessible for larger molecules or into larger voids to reduce the contact area between immiscible liquids. Freezing point depression caused by confined space and dissolution effects is affected by the blend organization.

10.
J Phys Chem A ; 113(24): 6612-9, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19514783

RESUMEN

The reaction between (3-aminopropyl)dimethylmethoxysilane (APDMS) with silica and silsesquioxane 3,5,7,9,11,13,15-heptacyclopentylpentacyclo[9.5.1.1(3,9).1(5,15).1(7,13)]octasiloxan-1-ol was studied in hexane and tetrahydrofuran (THF) using experimental (reaction kinetics, FTIR) and quantum chemistry methods. In hexane at temperatures above 245 K, the reaction rate decreases with increasing temperature due to a reduction of prereaction complex formation at higher temperature. Below 245 K the reaction itself is rate limiting, resulting in a reaction rate decrease with decreasing temperature. The reaction occurs much faster in hexane than in THF in part because of stronger competitive effects of the O-containing polar solvent with the formation of APDMS/silsesquioxane prereaction complexes due to hydrogen bonding. Analysis of the experimental data and computational results suggest that the catalytic reaction is second-order with respect to APDMS, the second APDMS molecule plays the role of catalyst. Estimation of the activation energy using dynamic calculations give results much more in agreement with experiment than nondynamic calculations, since the limiting H(+) transfer stage occurs so quickly (approximately 15 fs) that displacements of other atoms are insignificant to the activation energy.


Asunto(s)
Simulación por Computador , Modelos Químicos , Silanos/química , Siloxanos/química , Cinética , Teoría Cuántica , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
11.
Cryobiology ; 59(1): 102-12, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19481072

RESUMEN

The behaviour of intracellular water affected by organic solvents of different polarity in partially dehydrated marrow cells obtained from tubular bones of broiler chickens was studied using (1)H NMR spectroscopy at 210-290K. The (1)H NMR spectra of intracellular water include two signals which can be assigned to strongly (SAW, chemical shift of the proton resonance delta(H)=4-5ppm) and weakly (WAW, delta(H)=1.2-1.7ppm) associated waters which can be also divided into weakly (WBW, frozen at 250-0.8kJ/mol) and strongly (SBW, unfrozen at T<250K, DeltaG<-0.8kJ/mol) bound intracellular waters. Solvents of different polarity such as dimethylsulfoxide-d(6) (Me(2)SO-d(6)), acetonitrile-d(3), and chloroform-d differently affect structure, Gibbs free energy, and molecular mobility of intracellular water. A maximal fraction of SBW in WAW and a minimal fraction of SBW in SAW are observed on absorption of acetonitrile (0.8g/g) by cells. The opposite results are on addition of Me(2)SO (0.8g/g) which strongly changes organisation of intracellular water and enhances the freezing point depression of SBW.


Asunto(s)
Células de la Médula Ósea/citología , Criopreservación/métodos , Solventes/química , Absorción , Acetonitrilos/química , Acetonitrilos/farmacología , Animales , Células de la Médula Ósea/metabolismo , Pollos , Cloroformo/química , Cloroformo/farmacología , Crioprotectores/farmacología , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Metanol/química , Modelos Estadísticos , Termodinámica , Agua/química
12.
Gels ; 3(4)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30920534

RESUMEN

In this review, the importance of water in hydrogel (HG) properties and structure is analyzed. A variety of methods such as ¹H NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry), XRD (X-ray powder diffraction), dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform. According to thermodynamic features of water in HG, some of it is non-freezing and strongly bound, another fraction is freezing and weakly bound, and the third fraction is non-bound, free water freezing at 0 °C. According to structural features of water in HG, it can be divided into two fractions with strongly associated and weakly associated waters. The properties of the water in HG depend also on the amounts and types of solutes, pH, salinity, structural features of HG functionalities.

13.
Nanoscale Res Lett ; 12(1): 152, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28249372

RESUMEN

SiO2@PDMS and CeO2-ZrO2-SiO2@PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(dimethylsiloxane) (PDMS). Composites are characterized by mainly mesoporosity and macroporosity of aggregates of oxide nanoparticles or oxide@PDMS nanoparticles and their agglomerates. The FT-IR spectra show that PDMS molecules cover well the oxide surface, since the intensity of the band of free silanols at 3748 cm-1 decreases with increasing PDMS concentration and it is absent in the IR spectrum at C PDMS ≥ 20 wt% that occurs due to the hydrogen bonding of the PDMS molecules to the surface hydroxyls. SEM images reveal that the inter-particle voids are gradually filled and aggregates are re-arranged and increase from 20 to 200 nm in size with the increasing polymer concentration. The highest hydrophobicity (contact angle θ = 140° at C PDMS = 20-40 wt%) is obtained for the CeO2-ZrO2-SiO2@PDMS nanocomposites. The heat of composite immersion in water shows a tendency to decrease with increasing PDMS concentration.

14.
Nanoscale Res Lett ; 12(1): 155, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28249373

RESUMEN

A series of composites based on nanohydroxyapatite (nHAp) and natural polysaccharides (PS) (nHAp/agar, nHAp/chitosan, nHAp/pectin FB300, nHAp/pectin APA103, nHAp/sodium alginate) was synthesized by liquid-phase two-step method and characterized using nitrogen adsorption-desorption, DSC, TG, FTIR spectroscopy, and SEM. The analysis of nitrogen adsorption-desorption data shows that composites with a nHAp: PS ratio of 4:1 exhibit a sufficiently high specific surface area from 49 to 82 m2/g. The incremental pore size distributions indicate mainly mesoporosity. The composites with the component ratio 1:1 preferably form a film-like structure, and the value of S BET varies from 0.3 to 43 m2/g depending on the nature of a polysaccharide. Adsorption of Sr(II) on the composites from the aqueous solutions has been studied. The thermal properties of polysaccharides alone and in nHAp/PS show the influence of nHAp, since there is a shift of characteristic DSC and DTG peaks. FTIR spectroscopy data confirm the presence of functional groups typical for nHAp as well as polysaccharides in composites. Structure and morphological characteristics of the composites are strongly dependent on the ratio of components, since nHAp/PS at 4:1 have relatively large S BET values and a good ability to adsorb metal ions. The comparison of the adsorption capacity with respect to Sr(II) of nHAp, polysaccharides, and composites shows that it of the latter is higher than that of nHAp (per 1 m2 of surface).

15.
Nanoscale Res Lett ; 11(1): 111, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26924815

RESUMEN

A series of TiO2-ZrO2/SiO2 nanocomposites were synthesized using a liquid-phase method and characterized by various techniques, namely, nitrogen adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy, and photon correlation spectroscopy (PCS). It was revealed that the component ratio and calcination temperature affect the phase composition of nanocomposites. Composites TiZrSi1 (TiO2:ZrO2:SiO2 = 3:10:87) and TiZrSi2 (10:10:80) calcined at 1100 °Ð¡ demonstrate the presence of t-ZrO2 crystallites in TiZrSi1 and ZrTiO4 phase in TiZrSi2. The samples calcined at 550 °Ð¡ were amorphous as it was found from XRD data. According to the Raman spectra, the bands specific for anatase are observed in TiZrSi2. According to XPS data, Zr and Ti are in the highest oxidation state (+4). Textural analysis shows that initial silica is mainly meso/macroporous, but composites are mainly macroporous. The particle size distributions in aqueous media showed a tendency of increasing particle size with increasing TiO2 content in the composites.

16.
J Phys Chem B ; 109(12): 5667-77, 2005 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16851612

RESUMEN

Reactions of trimethylaluminum, triethylaluminum, and diethylaluminum chloride and ethylaluminum dichloride with silica gel have been studied experimentally by infrared spectroscopy and elemental analysis. The silica gel was subjected to different pretreatments to alter surface functionalities prior to reaction. In all cases the extent of surface modification reaction follows the trend unmodified > 600 degrees C pretreated > hexamethyldisilazane (HMDZ) pretreated > 600 degrees C/HMDZ pretreated. All of the aluminum compounds studied completely react non-hydrogen-bonded silanols, while also reacting with hydrogen-bonded silanols and siloxanes. Primarily monomeric surface species result from the surface modification reaction. Ethylaluminum chlorides preferentially react with silanols through cleavage of the Al-C bond rather than the Al-Cl bond. Singly bonded Si(s)-O-AlCl(2) surface species are readily synthesized by reaction of ethylaluminum dichloride with HMDZ-pretreated silica gel. Bridged bonded (Si(s)-O)(2)-AlCl surface species are readily synthesized by reaction of diethylaluminum chloride with HMDZ-pretreated silica gel. Computational ab initio studies of the cluster Si(4)O(6)(OH)(4) as a model to study the reaction of monomeric and dimeric methylaluminum dichloride with a silica silanol are also described. Comparison of the potential energy surface (PES) of monomer and dimer indicates that the energetics favor monomer reaction, consistent with experimental results. The energy cost in the dimer reaction is primarily from cleavage of a bridged Al-Cl bond upon adsorption. This does not occur when the monomer adsorbs. A comparison of the PES for the two reaction pathways resulting from cleavage of either an Al-Cl or Al-C bond indicates that while the former reaction is slightly kinetically favored (E(a) = 23.1 kJ/mol for Al-Cl bond cleavage versus E(a) = 31.1 kJ/mol for Al-C bond cleavage), the latter is strongly thermodynamically favored with an overall free energy difference between the two reaction pathways of 135 kJ/mol favorable to Al-C bond cleavage. These reactions are thermodynamically controlled.

17.
J Colloid Interface Sci ; 284(1): 39-47, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15752782

RESUMEN

Natural bentonite spent in the process of plant oil bleaching was used as an initial material for preparation of carbon-mineral adsorbents. The spent bleaching earth was treated using four procedures: T (thermal treatment); H (hydrothermal treatment); C (thermal treatment with addition of CCl4 vapor); M (modification of porous structure). Raw bentonite, RB (raw bleaching earth), and carbon materials prepared using plant oil were compared. The physicochemical characteristics of the adsorbents were determined using different methods: nitrogen adsorption/desorption, XRD, TEM, and MS-TPD. Carbon-mineral adsorbents contain from 5.23 to 19.92% C (w/w) and carbon adsorbents include from 84.2 to 91.18% C (w/w). Parallel processes of organic substance carbonization, porous structure modification, sublimation or evaporation of metal chlorides, and removal of hydrogen chloride take place during pyrolysis of waste mineral materials in the CCl4 atmosphere.

18.
Adv Colloid Interface Sci ; 105: 201-328, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-12969646

RESUMEN

Physical principles of photon correlation spectroscopy (PCS), mathematical treatment of the PCS data (converting autocorrelation functions to distribution functions or average characteristics), and PCS applications to study proteins and other biomacromolecules in aqueous media are described and analysed. The PCS investigations of conformational changes in protein molecules, their aggregation itself or in consequence of interaction with other molecules or organic (polymers) and inorganic (e.g. fumed silica) fine particles as well as the influence of low molecular compounds (surfactants, drugs, salts, metal ions, etc.) reveal unique capability of the PCS techniques for elucidation of important native functions of proteins and other biomacromolecules (DNA, RNA, etc.) or microorganisms (Escherichia coli, Pseudomonas putida, Dunaliella viridis, etc.). Special attention is paid to the interaction of proteins with fumed oxides and the impact of polymers and fine oxide particles on the motion of living flagellar microorganisms analysed by means of PCS.


Asunto(s)
Fotones , Proteínas/química , Análisis Espectral/métodos , Proteínas Bacterianas/química , Difusión , Luz , Modelos Estadísticos , Modelos Teóricos , Conformación Proteica , Proteínas/análisis , Dispersión de Radiación , Espectrometría de Fluorescencia/métodos , Análisis Espectral/instrumentación , Factores de Tiempo
19.
Colloid Polym Sci ; 292: 699-705, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24610970

RESUMEN

The influence of solution pH (in the range 3-9) on the adsorption of polyacrylic acid (PAA) on the mixed silica-alumina surface (SA-3: SiO2 97 %-Al2O3 3 % and SA-96: SiO2 4 %-Al2O3 96 %) was investigated. The following methods were applied in experiments: spectrophotometry, viscosimetry, potentiometric titration, and microelectrophoresis, which enable determination of adsorbed amount of the polymer, thickness of its adsorption layers, surface charge density, and zeta potential of solid particles in the presence and absence of PAA, respectively. The obtained results indicate that rise of solution pH causes the decrease of PAA adsorption and the increase of its adsorption layer thickness on surfaces of both solids. Moreover, significantly higher adsorption of polyacrylic acid was obtained on the SA-96 surface. This is a result of more favorable electrostatic interactions occurring between the adsorbing polymer chains and the SA-96 surface and formation of a greater number of adsorbate-adsorbent connections through hydrogen bridges.

20.
Adv Colloid Interface Sci ; 187-188: 1-46, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23218507

RESUMEN

Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4100 µm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.


Asunto(s)
Criogeles/química , Nanopartículas/química , Polímeros/química , Proteínas/química , Programas Informáticos , Agua/química , Adsorción , Frío , Difusión , Liofilización , Procesamiento de Imagen Asistido por Computador , Cinética , Nanopartículas/ultraestructura , Porosidad , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA