Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurosci ; 39(48): 9611-9622, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31641056

RESUMEN

The APOE ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of ß-amyloid (Aß). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation. The mechanisms regulating ApoE4 aggregation in vivo are surprisingly not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). ABCA1 recycling and degradation is regulated by ADP-ribosylation factor 6 (ARF6). We found that ApoE4 promoted greater expression of ARF6 compared with ApoE3, trapping ABCA1 in late-endosomes and impairing its recycling to the cell membrane. This was associated with lower ABCA1-mediated cholesterol efflux activity, a greater percentage of lipid-free ApoE particles, and lower Aß degradation capacity. Human CSF from APOE ε4/ε4 carriers showed a lower ability to induce ABCA1-mediated cholesterol efflux activity and greater percentage of aggregated ApoE protein compared with CSF from APOE ε3/ε3 carriers. Enhancing ABCA1 activity rescued impaired Aß degradation in ApoE4-treated cells and reduced both ApoE and ABCA1 aggregation in the hippocampus of male ApoE4-targeted replacement mice. Together, our data demonstrate that aggregated and lipid-poor ApoE4 increases ABCA1 aggregation and decreases ABCA1 cell membrane recycling. Enhancing ABCA1 activity to reduce ApoE and ABCA1 aggregation is a potential therapeutic strategy for the prevention of ApoE4 aggregation-driven pathology.SIGNIFICANCE STATEMENT ApoE protein plays a key role in the formation of amyloid plaques, a hallmark of Alzheimer's disease (AD). ApoE4 is more aggregated and hypolipidated compared with ApoE3, but whether enhancing ApoE lipidation in vivo can reverse ApoE aggregation is not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). In this study, we demonstrated that the greater propensity of lipid-poor ApoE4 to aggregate decreased ABCA1 membrane recycling and its ability to lipidate ApoE. Importantly, enhancing ABCA1 activity to lipidate ApoE reduced ApoE and ABCA1 aggregation. This work provides critical insights into the interactions among ABCA1, ApoE lipidation and aggregation, and underscores the promise of stabilizing ABCA1 activity to prevent ApoE-driven aggregation pathology.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Membrana Celular/metabolismo , Factor 6 de Ribosilación del ADP , Anciano , Anciano de 80 o más Años , Animales , Apolipoproteína E4/farmacología , Astrocitos/efectos de los fármacos , Línea Celular Transformada , Membrana Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
2.
PLoS Genet ; 13(10): e1007048, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29059194

RESUMEN

Neuropilin-1 (Nrp1) encodes the transmembrane cellular receptor neuropilin-1, which is associated with cardiovascular and neuronal development and was within the peak SNP interval on chromosome 8 in our prior GWAS study on age-related hearing loss (ARHL) in mice. In this study, we generated and characterized an inner ear-specific Nrp1 conditional knockout (CKO) mouse line because Nrp1 constitutive knockouts are embryonic lethal. In situ hybridization demonstrated weak Nrp1 mRNA expression late in embryonic cochlear development, but increased expression in early postnatal stages when cochlear hair cell innervation patterns have been shown to mature. At postnatal day 5, Nrp1 CKO mice showed disorganized outer spiral bundles and enlarged microvessels of the stria vascularis (SV) but normal spiral ganglion cell (SGN) density and presynaptic ribbon body counts; however, we observed enlarged SV microvessels, reduced SGN density, and a reduction of presynaptic ribbons in the outer hair cell region of 4-month-old Nrp1 CKO mice. In addition, we demonstrated elevated hearing thresholds of the 2-month-old and 4-month-old Nrp1 CKO mice at frequencies ranging from 4 to 32kHz when compared to 2-month-old mice. These data suggest that conditional loss of Nrp1 in the inner ear leads to progressive hearing loss in mice. We also demonstrated that mice with a truncated variant of Nrp1 show cochlear axon guidance defects and that exogenous semaphorin-3A, a known neuropilin-1 receptor agonist, repels SGN axons in vitro. These data suggest that Neuropilin-1/Semaphorin-3A signaling may also serve a role in neuronal pathfinding in the developing cochlea. In summary, our results here support a model whereby Neuropilin-1/Semaphorin-3A signaling is critical for the functional and morphological integrity of the cochlea and that Nrp1 may play a role in ARHL.


Asunto(s)
Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Ganglio Espiral de la Cóclea/embriología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis , Neuronas/citología , Neuropilina-1/genética , Semaforina-3A/genética , Transducción de Señal , Ganglio Espiral de la Cóclea/citología
3.
Biochem Biophys Res Commun ; 495(1): 230-237, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29108990

RESUMEN

Although the function of laminin in the basement membrane is known, the function of soluble "neuronal" laminin is unknown. Since laminin is neuroprotective, we determined whether the soluble laminin-1 induces signaling for neuroprotection via its 67KDa laminin-1 receptor (67LR). Treatment of Neuroscreen-1 (NS-1) cells with laminin-1 or YIGSR peptide, which corresponds to a sequence in laminin-1 ß1 chain that binds to 67LR, induced a decrease in the cell-surface expression of 67LR and caused its internalization. Furthermore, intracellular cAMP-elevating agents, dibutyryl-cAMP, forskolin, and rolipram, also induced this internalization. Both soluble laminin-1 and YIGSR induced a sustained elevation of intracellular cAMP under defined conditions, suggesting a causal role of cAMP in the endocytosis of 67LR. This endocytosis was not observed in cells deficient in protein kinase A (PKA) nor in cells treated with either SQ 22536, an inhibitor for adenylyl cyclase, or ESI-09, an inhibitor for the exchange protein directly activated by cAMP (Epac). In addition, when internalization occurred in NS-1 cells, 67LR and adenylyl cyclase were localized in early endosomes. Under conditions in which endocytosis had occurred, both laminin-1 and YIGSR protected NS-1 cells from cell death induced by serum withdrawal. However, under conditions in which endocytosis did not occur, neither laminin-1 nor YIGSR protected these cells. Conceivably, the binding of laminin-1 to 67LR causes initial signaling through PKA and Epac, which causes the internalization of 67LR, along with signaling enzymes, such as adenylyl cyclase, into early endosomes. This causes sustained signaling for protection against cell death induced by serum withdrawal.


Asunto(s)
Endocitosis , Laminina/metabolismo , Neuronas/citología , Neuroprotección , Adenilil Ciclasas/metabolismo , Muerte Celular , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Neuronas/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribosómicas , Transducción de Señal
4.
J Neurochem ; 132(1): 70-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25314656

RESUMEN

Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2 O2 in this process. Accordingly, exogenous sublethal concentrations of H2 O2 , added as a bolus dose (5 µM) or more effectively through a steady-state generation (1-2 µM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2 O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2 O2 , inhibit the antineuritogenic action of Nogo-A. Currently, several agents are being evaluated for overcoming axonal growth inhibitors to promote functional recovery after stroke and spinal cord injury. Epigallocatechin-3-gallate (EGCG), present in green tea polyphenol mixture (GTPP), prevents antineuritogenic activity of Nogo-A, a myelin-derived axonal growth inhibitor. The preventive action of EGCG involves the cell-surface-associated 67-kDa laminin receptor and H2 O2 . GTPP may complement ongoing efforts to treat neuronal injuries.>


Asunto(s)
Peróxido de Hidrógeno/farmacología , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/farmacología , Neuritas/efectos de los fármacos , Oxidantes/farmacología , Polifenoles/farmacología , Receptores de Laminina/efectos de los fármacos , Té/química , Animales , Células Cultivadas , Conos de Crecimiento/efectos de los fármacos , Ratones , Proteínas Nogo , Polifenoles/química , Seudópodos/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 445(1): 218-24, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24508265

RESUMEN

Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (<0.1 µg/ml) of unfractionated green tea polyphenols (GTPP) and low concentrations (<0.5 µM) of their active ingredient, epigallocatechin-3-gallate (EGCG), potentiated the neuritogenic ability of a low concentration (2 ng/ml) of BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67 kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 µM) or more effectively through a steady-state generation (1 µM), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67 LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Catequina/farmacología , Neuritas/efectos de los fármacos , Té/química , Animales , Antioxidantes/farmacología , Catequina/análogos & derivados , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Peso Molecular , Neuritas/fisiología , Oxidantes/metabolismo , Oxidantes/farmacología , Células PC12 , Polifenoles/farmacología , Ratas , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Laminina/química , Receptores de Laminina/metabolismo , Receptores de Laminina/fisiología
6.
J Biol Chem ; 287(41): 34694-708, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22879598

RESUMEN

As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKCε from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKCε and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKCε, resulting in preconditioning against cell death induced by OGD/R.


Asunto(s)
Antioxidantes/farmacología , Catequina/análogos & derivados , Membrana Celular/enzimología , Citosol/enzimología , Glucosa , Oxígeno , Polifenoles/farmacología , Proteína Quinasa C-epsilon/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Laminina/metabolismo , Té/química , Animales , Antioxidantes/química , Catequina/química , Catequina/farmacocinética , Catequina/farmacología , Muerte Celular , Activación Enzimática/efectos de los fármacos , Células PC12 , Polifenoles/química , Unión Proteica/efectos de los fármacos , Proteína Quinasa C-epsilon/genética , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores de Laminina/genética
7.
J Neurosci Res ; 88(16): 3644-55, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20936703

RESUMEN

Exogenously administered nerve growth factor (NGF) repairs injured axons, but it does not cross the blood-brain barrier. Thus, agents that could potentiate the neuritogenic ability of endogenous NGF would be of great utility in treating neurological injuries. Using the PC12 cell model, we show here that unfractionated green tea polyphenols (GTPP) at low concentrations (0.1 µg/ml) potentiate the ability of low concentrations of NGF (2 ng/ml) to induce neuritogenesis at a level comparable to that induced by optimally high concentrations of NGF (50 ng/ml) alone. In our experiments, GTPP by itself did not induce neuritogenesis or increase immunofluorescent staining for ß-tubulin III; however, it increased expression of mRNA and proteins for the neuronal markers neurofilament-L and GAP-43. Among the polyphenols present in GTPP, epigallocatechin-3-gallate (EGCG) alone appreciably potentiated NGF-induced neurite outgrowth. Although other polyphenols present in GTPP, particularly epigallocatechin and epicatechin, lack this activity, they synergistically promoted this action of EGCG. GTPP also induced an activation of extracellular signal-regulated kinases (ERKs). PD98059, an inhibitor of the ERK pathway, blocked the expression of GAP-43. K252a, an inhibitor of TrkA-associated tyrosine kinase, partially blocked the expression of these genes and ERK activation. Antioxidants, catalase (cell-permeable form), and N-acetylcysteine (both L and D-forms) inhibited these events and abolished the GTPP potentiation of NGF-induced neuritogenesis. Taken together, these results show for the first time that GTPP potentiates NGF-induced neuritogenesis, likely through the involvement of sublethal levels of reactive oxygen species, and suggest that unfractionated GTPP is more effective in this respect than its fractionated polyphenols.


Asunto(s)
Antioxidantes/farmacología , Catequina/análogos & derivados , Flavonoides/farmacología , Factor de Crecimiento Nervioso/fisiología , Neuritas/efectos de los fármacos , Fenoles/farmacología , Animales , Catequina/farmacología , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neuritas/fisiología , Células PC12 , Polifenoles , Ratas ,
8.
Carcinogenesis ; 30(9): 1553-61, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19578042

RESUMEN

Selenium prevents cancer in some cases but fails to do so in others. Selenium's failure in this respect may be due to the development of resistance to its chemopreventive actions. Selenocompounds induce a variety of cancer-preventive actions in tumor cells, but these actions may be limited by the low concentrations of free selenocompounds able to reach cells from the plasma. Therefore, we have sought to identify the chemopreventive action requiring the lowest concentration of the redox-active form of selenium, methylseleninic acid (MSA). At submicromolar concentrations, MSA inhibited the malignant transformation of RWPE-1 prostate epithelial cells. In contrast, in already transformed prostate cancer cells, selenium in the micromolar range was required to inhibit cell growth and invasion and to induce apoptosis. The role of protein kinase C (PKC) in these cellular processes, especially the moderately selenium-sensitive PKCepsilon, was demonstrated using PKC-specific inhibitors and small interfering RNA. PKCepsilon levels inversely correlated with cellular sensitivity to MSA. An over-expression of PKCepsilon minimized MSA-induced inhibition of RWPE-1 cell transformation and induction of apoptosis. Thioredoxin reductase (TR), a selenoprotein, reversed the MSA-induced inactivation of PKC isoenzymes. High TR expression in advanced prostate cancer cells correlated with resistance to MSA. Furthermore, inhibition of TR by its specific inhibitor, auranofin, resulted in increased sensitivity of prostate cancer cells to MSA. Collectively, these results suggest that the cancer-preventive actions of selenium may be negated both by an over-expression of PKCepsilon, which is a redox-sensitive target for MSA, and by the selenoprotein TR, which reverses PKC sulfhydryl redox modification.


Asunto(s)
Anticarcinógenos/farmacología , Compuestos de Organoselenio/farmacología , Proteína Quinasa C-epsilon/fisiología , Reductasa de Tiorredoxina-Disulfuro/fisiología , Línea Celular Tumoral , Humanos , Indoles/farmacología , Masculino , Maleimidas/farmacología , Metilnitrosourea/toxicidad , Invasividad Neoplásica , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/prevención & control
9.
Free Radic Biol Med ; 127: 55-61, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29775743

RESUMEN

The cancer-preventive mechanism of selenium should address the way low concentrations of selenometabolites react with cellular targets without being diffused from the sites of generation, the way selenium selectively kills tumor cells, and the intriguing U-shaped curve that is seen with dietary supplementation of selenium and cancer prevention. Protein kinase C (PKC), a receptor for tumor promoters, is well suited for this mechanism. Due to the catalytic redox cycle, low concentrations of methylselenol, a postulated active metabolite of selenium, react with the tumor-promoting lipid hydroperoxide bound to PKC to form methylseleninic acid (MSA), which selectively reacts with thiol residues present within the vicinity of the PKC catalytic domain to inactivate it. Given that lipid hydroperoxide levels are high in promoting cells, PKC inactivation selectively leads to death in these cells. A biphasic effect of MSA in inducing cell death was observed in certain prostate cancer cell lines; lower concentrations of MSA induced cell death, while higher concentrations failed to do so. Lower concentrations of selenium inactivate more sensitive antiapoptotic isoenzymes of PKC (ε and α), sparing less sensitive proapoptotic isoenzymes (PKCδ and PKCζ). Higher concentrations of selenium also inactivate proapoptotic isoenzymes and consequently make tumor cells resistant to apoptosis. Due to a high-affinity binding of thioredoxin to the PKC catalytic domain, this thiol oxidation is explicitly reversed by thioredoxin reductase (TXNRD), a selenoprotein. Therefore, overexpression of TXNRD in advanced tumor cells could make them resistant to selenium-induced death. Conceivably, this mechanism, at least in part, explains why selenium prevents cancer only in certain cases.


Asunto(s)
Neoplasias/metabolismo , Proteína Quinasa C/metabolismo , Selenio/metabolismo , Selenoproteínas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Humanos , Isoenzimas/metabolismo , Neoplasias/prevención & control , Oxidación-Reducción
10.
React Oxyg Species (Apex) ; 2(4): 272-289, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29795790

RESUMEN

Although several experimental studies showed cancer-preventive efficacy of supplemental dietary selenium, human clinical trials questioned this efficacy. Identifying its molecular targets and mechanism is important in understanding this discrepancy. Methylselenol, the active metabolite of selenium, reacts with lipid hydroperoxides bound to protein kinase C (PKC) and is oxidized to methylseleninic acid (MSA). This locally generated MSA selectively inactivates PKC by oxidizing its critical cysteine sulfhydryls. The peroxidatic redox cycle occurring in this process may explain how extremely low concentrations of selenium catalytically modify specific membrane-bound proteins compartmentally separated from glutathione and selectively induce cytotoxicity in promoting cells. Mammalian thioredoxin reductase (TR) is itself a selenoenzyme with a catalytic selenocysteine residue. Together with thioredoxin (Trx), it catalyzes reduction of selenite and selenocystine by NADPH generating selenide which in the presence of oxygen redox cycles producing reactive oxygen species. Trx binds with high affinity to PKC and reverses PKC inactivation. Therefore, established tumor cells overexpressing TR and Trx may escape the cancer-preventive actions of selenium. This suggests that in some cases, certain selenoproteins may counteract selenometabolite actions. Lower concentrations of selenium readily inactivate antiapoptotic PKC isoenzymes e and a which have a cluster of vicinal thiols, thereby inducing apoptosis. Higher concentrations of selenium also inactivate proapoptotic enzymes such as proteolytically activated PKCd fragment, holo-PKCz, caspase-3, and c-Jun N-terminal kinase, which all have a limited number of critical cysteine residues and make tumor cells resistant to selenium-induced apoptosis. This may explain the intriguing U-shaped curve that is seen with dietary selenium intake and the extent of cancer prevention.

11.
Methods Enzymol ; 528: 79-98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23849860

RESUMEN

The protein kinase C (PKC) family of isoenzymes may be a crucial player in transducing H2O2-induced signaling in a wide variety of physiological and pathophysiological processes. PKCs contain unique structural features that make them highly susceptible to oxidative modification. Depending on the site of oxidation and the extent to which it is modified, PKC can be either activated or inactivated by H2O2. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are readily oxidized by H2O2. When oxidized, the autoinhibitory function of the regulatory domain is compromised, and as a result, PKC is activated in a lipid cofactor-independent manner. The C-terminal catalytic domain contains several reactive cysteine residues, which when oxidized with a higher concentration of H2O2 leads to an inactivation of PKC. Here, we describe the methods used to induce oxidative modification of purified PKC isoenzymes by H2O2 and the methods to assess the extent of this modification. Protocols are given for isolating oxidatively activated PKC isoenzymes from cells treated with H2O2. Furthermore, we describe the methods used to assess indirect regulation of PKC isoenzymes by determining their cytosol to membrane or mitochondrial translocation and tyrosine phosphorylation of PKCδ in response to sublethal levels of H2O2. Finally, as an example, we describe the methods used to demonstrate the role of H2O2-mediated cell signaling of PKCɛ in green tea polyphenol-induced preconditioning against neuronal cell death caused by oxygen-glucose deprivation and reoxygenation, an in vitro model for cerebral ischemic/reperfusion injury.


Asunto(s)
Bioensayo , Membrana Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Proteína Quinasa C/metabolismo , Animales , Camellia sinensis/química , Muerte Celular/efectos de los fármacos , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Forbol 12,13-Dibutirato/análisis , Fosforilación , Extractos Vegetales/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Transducción de Señal
13.
J Biol Chem ; 283(21): 14430-44, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18375950

RESUMEN

In this study, we have used the PC12 cell model to elucidate the mechanisms by which sublethal doses of oxidants induce neuritogenesis. The xanthine/xanthine oxidase (X/XO) system was used for the steady state generation of superoxide, and CoCl(2) was used as a representative transition metal redox catalyst. Upon treatment of purified protein kinase C (PKC) with these oxidants, there was an increase in its cofactor-independent activation. Redox-active cobalt competed with the redoxinert zinc present in the zinc-thiolates of the PKC regulatory domain and induced the oxidation of these cysteine-rich regions. Both CoCl(2) and X/XO induced neurite outgrowth in PC12 cells, as determined by an overexpression of neuronal marker genes. Furthermore, these oxidants induced a translocation of PKC from cytosol to membrane and subsequent conversion of PKC to a cofactor-independent form. Isoenzyme-specific PKC inhibitors demonstrated that PKCepsilon plays a crucial role in neuritogenesis. Moreover, oxidant-induced neurite outgrowth was increased with a conditional overexpression of PKCepsilon and decreased with its knock-out by small interfering RNA. Parallel with PKC activation, an increase in phosphorylation of the growth-associated neuronal protein GAP-43 at Ser(41) was observed. Additionally, there was a sustained activation of extracellular signal-regulated kinases 1 and 2, which was correlated with activating phosphorylation (Ser(133)) of cAMP-responsive element-binding protein. All of these signaling events that are causally linked to neuritogenesis were blocked by antioxidant N-acetylcysteine (both L and D-forms) and by a variety of PKC-specific inhibitors. Taken together, these results strongly suggest that sublethal doses of oxidants induce neuritogenesis via a direct redox activation of PKCepsilon.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Neuronas/enzimología , Oxidantes/farmacología , Proteína Quinasa C/metabolismo , Animales , Antioxidantes/farmacología , Quelantes/farmacología , Cobalto/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Activación Enzimática , Glutatión/farmacología , Isoenzimas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuritas/efectos de los fármacos , Neuritas/enzimología , Neuronas/efectos de los fármacos , Oxidación-Reducción , Células PC12 , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Compuestos de Sulfhidrilo/farmacología , Zinc/farmacología
14.
J Biol Chem ; 283(50): 34519-31, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18922790

RESUMEN

In this study, we show that methylselenol, a selenometabolite implicated in cancer prevention, did not directly inactivate protein kinase C (PKC). Nonetheless, its oxidation product, methylseleninic acid (MSA), inactivated PKC at low micromolar concentrations through a redox modification of vicinal cysteine sulfhydryls in the catalytic domain of PKC. This modification of PKC that occurred in both isolated form and in intact cells was reversed by a reductase system involving thioredoxin reductase, a selenoprotein. PKC isoenzymes exhibited variable sensitivity to MSA with Ca(2+)-dependent PKC isoenzymes (alpha, beta, and gamma) being the most susceptible, followed by isoenzymes delta and epsilon. Other enzymes tested were inactivated only with severalfold higher concentrations of MSA than those required for PKC inactivation. This specificity for PKC was further enhanced when MSA was generated within close proximity to PKC through a reaction of methylselenol with PKC-bound lipid peroxides in the membrane. The MSA-methylselenol redox cycle resulted in the catalytic oxidation of sulfhydryls even with nanomolar concentrations of selenium. MSA inhibited cell growth and induced apoptosis in DU145 prostate cancer cells at a concentration that was higher than that needed to inhibit purified PKC alpha but in a range comparable with that required for the inhibition of PKC epsilon. This MSA-induced growth inhibition and apoptosis decreased with a conditional overexpression of PKC epsilon and increased with its knock-out by small interfering RNA. Conceivably, when MSA is generated within the vicinity of PKC, it specifically inactivates PKC isoenzymes, particularly the promitogenic and prosurvival epsilon isoenzyme, and this inactivation causes growth inhibition and apoptosis.


Asunto(s)
Apoptosis , Compuestos de Organoselenio/metabolismo , Neoplasias de la Próstata/enzimología , Proteína Quinasa C/metabolismo , Selenio/farmacología , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Isoenzimas/química , Masculino , Oxígeno/química , Neoplasias de la Próstata/metabolismo , Proteína Quinasa C/química , ARN Interferente Pequeño/metabolismo
15.
Neurobiol Dis ; 19(1-2): 331-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15837589

RESUMEN

Estrogen has demonstrated neuroprotective properties, which may underlie the observed preventive effect of estrogen-based hormone therapy (HT) against the development of neurodegenerative disorders such as Alzheimer's disease. Deleterious side effects of HT have increased efforts to develop safer compounds that selectively reproduce beneficial estrogen actions. Recently, 4-estren-3 alpha,17 beta-diol (estren) was identified as having estrogen agonist properties in bone, without significantly stimulating growth of reproductive tissues. Here, we examined whether estren parallels the neuroprotective actions of estrogen against beta-amyloid (A beta) in cultured cerebrocortical neurons. Estren increased neuronal viability to a similar extent to that observed with 17 beta-estradiol (E2) and 17 alpha-estradiol. As we previously reported for E2, estren rapidly increased PKC activity, and PKC inhibition prevented estren neuroprotection. In contrast, the estrogen receptor antagonist ICI 182,780 blocked E2, but not estren neuroprotection. Our results indicate that estren-induced activation of rapid cell signaling pathways protects cultured neurons from A beta toxicity.


Asunto(s)
Congéneres del Estradiol/fisiología , Estrenos/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratas
16.
J Nutr ; 132(12): 3819S-3823S, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12468631

RESUMEN

Besides scavenging free radicals, antioxidants inhibit signaling enzymes such as protein kinase C (PKC) that play a crucial role in tumor promotion. By having different oxidation susceptible regions, PKC can respond to both oxidant tumor promoters and cancer-preventive antioxidants to elicit opposite cellular responses. Oxidant tumor promoters activate PKC by reacting with zinc-thiolates present within the regulatory domain. In contrast, the oxidized forms of some cancer-preventive agents, such as polyphenolics (ellagic acid, 4-hydroxytamoxifen and curcumin) and selenocompounds, can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. This brings an efficient counteractive mechanism to block the signal transduction induced by tumor promoters at the first step itself. Because prostate cancer prevention clinical trials in large human population are under way, we have focused more on understanding the cancer-preventive mechanism of selenium. Methylselenol, the postulated cancer-preventive metabolite, has no direct effect on PKC activity. However, methylseleninic acid, locally generated by the reaction of membrane methylselenol with PKC-bound tumor-promoting fatty acid hydroperoxides, selectively inactivates PKC. This mechanism clarifies how the volatile methylselenol that is present in a low concentration induces the inactivation of PKC selectively in the promoting precancer cells. Selenoprotein thioredoxin reductase reverses selenium-induced inactivation of PKC, suggesting that selenoproteins may serve as a safeguard against the toxicity induced by selenometabolites. Moreover, this also explains how a resistance to selenium develops in advanced malignant cells. The redox-mediated inactivation of PKC may, at least in part, be responsible for the antioxidant-induced inhibition of tumor promotion and cell growth, as well as for the induction of cell death.


Asunto(s)
Antioxidantes/farmacología , Neoplasias/prevención & control , Proteína Quinasa C/metabolismo , Animales , Anticarcinógenos/metabolismo , Carcinógenos/metabolismo , Humanos , Proteína Quinasa C/antagonistas & inhibidores , Compuestos de Selenio/farmacología
17.
J Neurochem ; 84(6): 1340-8, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12614334

RESUMEN

It has been previously demonstrated that estrogen can protect neurons from a variety of insults, including beta-amyloid (Abeta). Recent studies have shown that estrogen can rapidly modulate intracellular signaling pathways involved in cell survival. In particular, estrogen activates protein kinase C (PKC) in a variety of cell types. This enzyme plays a key role in many cellular events, including regulation of apoptosis. In this study, we show that 17beta-estradiol (E2) rapidly increases PKC activity in primary cultures of rat cerebrocortical neurons. A 1 h pre-treatment with E2 or phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, protects neurons against Abeta toxicity. Protection afforded by both PMA and E2 is blocked by pharmacological inhibitors of PKC. Further, depletion of PKC levels resulting from prolonged PMA exposure prevents subsequent E2 or PMA protection. Our results indicate that E2 activates PKC in neurons, and that PKC activation is an important step in estrogen protection against Abeta. These data provide new understanding into the mechanism(s) underlying estrogen neuroprotection, an action with therapeutic relevance to Alzheimer's disease and other age-related neurodegenerative disorders.


Asunto(s)
Estrógenos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Proteína Quinasa C/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Citoprotección/fisiología , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas/citología , Fragmentos de Péptidos/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA