Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25434003

RESUMEN

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Asunto(s)
Atresia de las Coanas/genética , Sordera/congénito , Eliminación de Gen , Cardiopatías Congénitas/genética , Regiones Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Empalmosomas/genética , Alelos , Preescolar , Atresia de las Coanas/diagnóstico , Sordera/diagnóstico , Sordera/genética , Exosomas/genética , Facies , Femenino , Perfilación de la Expresión Génica , Frecuencia de los Genes , Genes Reporteros , Cardiopatías Congénitas/diagnóstico , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Fenotipo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Análisis de Secuencia de ADN , Empalmosomas/metabolismo
2.
Microbiology (Reading) ; 160(Pt 8): 1690-1704, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899627

RESUMEN

Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.


Asunto(s)
Evolución Biológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrógeno/metabolismo , Regulón , Proteínas Represoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Estrés Oxidativo , Proteínas Represoras/genética
3.
J Biol Chem ; 287(9): 6892-903, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22223481

RESUMEN

Hypochlorite is a powerful oxidant produced by neutrophils to kill invading microorganisms. Despite this important physiological role of HOCl in fighting bacterial infections, no hypochlorite-specific stress response has been identified yet. Here, we identified a hypochlorite-responsive transcription factor, YjiE, which is conserved in proteobacteria and eukaryotes. YjiE forms unusual dodecameric ring-like structures in vitro that undergo large DNA-induced conformational changes to form dimers and tetramers as shown by transmission electron microscopy and analytical ultracentrifugation. Such smaller oligomers are predominant in hypochlorite-stressed cells and are the active species as shown by fluorescence anisotropy and analytical ultracentrifugation. YjiE regulates a large number of genes upon hypochlorite stress. Among them are genes involved in cysteine, methionine biosynthesis, and sulfur metabolism (up-regulated) and genes involved in iron acquisition and homeostasis (down-regulated), thus supposedly replenishing oxidized metabolites and decreasing the hypochlorite-mediated amplification of intracellular reactive oxygen species. As a result, YjiE specifically confers hypochlorite resistance to E. coli cells. Thus, to our knowledge, YjiE is the first described hypochlorite-specific transcription factor.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácido Hipocloroso/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética
4.
Eur J Hum Genet ; 23(6): 753-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25138099

RESUMEN

Intellectual disability (ID) has an estimated prevalence of 2-3%. Due to its extreme heterogeneity, the genetic basis of ID remains elusive in many cases. Recently, whole exome sequencing (WES) studies revealed that a large proportion of sporadic cases are caused by de novo gene variants. To identify further genes involved in ID, we performed WES in 250 patients with unexplained ID and their unaffected parents and included exomes of 51 previously sequenced child-parents trios in the analysis. Exome analysis revealed de novo intragenic variants in SET domain-containing 5 (SETD5) in two patients. One patient carried a nonsense variant, and the other an 81 bp deletion located across a splice-donor site. Chromosomal microarray diagnostics further identified four de novo non-recurrent microdeletions encompassing SETD5. CRISPR/Cas9 mutation modelling of the two intragenic variants demonstrated nonsense-mediated decay of the resulting transcripts, pointing to a loss-of-function (LoF) and haploinsufficiency as the common disease-causing mechanism of intragenic SETD5 sequence variants and SETD5-containing microdeletions. In silico domain prediction of SETD5, a predicted SET domain-containing histone methyltransferase (HMT), substantiated the presence of a SET domain and identified a novel putative PHD domain, strengthening a functional link to well-known histone-modifying ID genes. All six patients presented with ID and certain facial dysmorphisms, suggesting that SETD5 sequence variants contribute substantially to the microdeletion 3p25.3 phenotype. The present report of two SETD5 LoF variants in 301 patients demonstrates a prevalence of 0.7% and thus SETD5 variants as a relatively frequent cause of ID.


Asunto(s)
Codón sin Sentido , Discapacidad Intelectual/genética , Metiltransferasas/genética , Fenotipo , Adolescente , Secuencia de Aminoácidos , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Exoma , Femenino , Humanos , Masculino , Metiltransferasas/química , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Síndrome , Adulto Joven
5.
PLoS One ; 8(10): e75683, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116067

RESUMEN

Reactive oxygen species are important components of the immune response. Hypochlorite (HOCl) is produced by neutrophils to kill invading microorganisms. The bactericidal activity of HOCl is due to proteome-wide unfolding and oxidation of proteins at cysteine and methionine residues. Escherichia coli cells are protected from HOCl-killing by the previously identified dodecameric transcription factor HypT (YjiE). Here, we aimed to unravel whether HOCl activates HypT directly or via a reaction product of HOCl with a cellular component. Bacterial viability assays and analysis of target gene regulation indicate that HypT is highly specific to activation by HOCl and that no reaction products of HOCl such as monochloramine, hydroxyl radicals, or methionine sulfoxide activate HypT in vivo. Surprisingly, purified HypT lost its DNA-binding activity upon incubation with HOCl or reaction products that oxidize HypT to form a disulfide-linked dimer, and regained DNA-binding activity upon reduction. Thus, we postulate that the cysteines in HypT contribute to control the DNA-binding activity of HypT in vitro. HypT contains five cysteine residues; a HypT mutant with all cysteines substituted by serine is aggregation-prone and forms tetramers in addition to the typical dodecamers. Using single and multiple cysteine-to-serine mutants, we identified Cys150 to be required for stability and Cys4 being important for oligomerization of HypT to dodecamers. Further, oxidation of Cys4 is responsible for the loss of DNA-binding of HypT upon oxidation in vitro. It appears that Cys4 oxidation upon conditions that are insufficient to stimulate the DNA-binding activity of HypT prevents unproductive interactions of HypT with DNA. Thus, Cys4 oxidation may be a check point in the activation process of HypT.


Asunto(s)
Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Hipocloroso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA