Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(9): 3817-3828, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386850

RESUMEN

Mass spectrometry (MS) is a powerful technology for the structural elucidation of known or unknown small molecules. However, the accuracy of MS-based structure annotation is still limited due to the presence of numerous isomers in complex matrices. There are still challenges in automatically interpreting the fine structure of molecules, such as the types and positions of substituents (substituent modes, SMs) in the structure. In this study, we employed flavones, flavonols, and isoflavones as examples to develop an automated annotation method for identifying the SMs on the parent molecular skeleton based on a characteristic MS/MS fragment ion library. Importantly, user-friendly software AnnoSM was built for the convenience of researchers with limited computational backgrounds. It achieved 76.87% top-1 accuracy on the 148 authentic standards. Among them, 22 sets of flavonoid isomers were successfully differentiated. Moreover, the developed method was successfully applied to complex matrices. One such example is the extract of Ginkgo biloba L. (EGB), in which 331 possible flavonoids with SM candidates were annotated. Among them, 23 flavonoids were verified by authentic standards. The correct SMs of 13 flavonoids were ranked first on the candidate list. In the future, this software can also be extrapolated to other classes of compounds.


Asunto(s)
Flavonoides , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Flavonoides/análisis , Extractos Vegetales/química , Isomerismo , Iones , Esqueleto/química , Cromatografía Líquida de Alta Presión/métodos
2.
Anal Chim Acta ; 1278: 341720, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709461

RESUMEN

Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA