Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 23(9): 4925-4938, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33438355

RESUMEN

The photolyases PHR1 and PHR2 enable photorepair of fungal DNA lesions in the forms of UV-induced cyclobutane pyrimidine dimer (CPD) and (6-4)-pyrimidine-pyrimidone (6-4PP) photoproducts, but their regulation remains mechanistically elusive. Here, we report that the white collar proteins WC1 and WC2 mutually interacting to form a light-responsive transcription factor regulate photolyase expression required for fungal UV resistance in the insect-pathogenic fungus Metharhizum robertsii. Conidial UVB resistance decreased by 54% in Δwc1 and 67% in Δwc2. Five-hour exposure of UVB-inactivated conidia to visible light resulted in photoreactivation rates of 30% and 9% for the Δwc1 and Δwc2 mutants, contrasting to 79%-82% for wild-type and complemented strains. Importantly, abolished transcription of phr1 in Δwc-2 and of phr2 in Δwc1 resulted in incapable photorepair of CDP and 6-4PP DNA lesions in UVB-impaired Δwc2 and Δwc1 cells respectively. Yeast two-hybrid assays revealed interactions of either WC protein with both PHR1 and PHR2. Therefore, the essential roles for WC1 and WC2 in both photorepair of UVB-induced DNA lesions and photoreactivation of UVB-inactivated conidia rely upon their interactions with, and hence transcriptional activation of, PHR1 and PHR2. These findings uncover a novel WC-cored pathway that mediates filamentous fungal response and adaptation to solar UV irradiation.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Proteínas Fúngicas , Metarhizium , Rayos Ultravioleta , Daño del ADN , Reparación del ADN , ADN de Hongos , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metarhizium/enzimología , Metarhizium/genética , Metarhizium/efectos de la radiación , Dímeros de Pirimidina
2.
Environ Microbiol ; 23(9): 5184-5199, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33817932

RESUMEN

The upstream developmental activation (UDA) pathway comprises three fluG-cored cascades (fluG-flbA, fluG-flbE/B/D and fluG-flbC) that activate the key gene brlA of central developmental pathway (CDP) to initiate conidiation in aspergilli. However, the core role of fluG remains poorly understood in other fungi. Here, we report distinctive role of fluG in the insect-pathogenic lifecycle of Beauveria bassiana. Disruption of fluG resulted in limited conidiation defect, which was mitigated with incubation time and associated with time-course up-regulation/down-regulation of all flb and CDP genes and another fluG-like gene (BBA_06309). In ΔfluG, increased sensitivities to various stresses correlated with repression of corresponding stress-responsive genes. Its virulence through normal cuticle infection was attenuated greatly due to blocked secretion of cuticle-degrading enzymes and delayed formation of hyphal bodies (blastospores) to accelerate proliferation in vivo and host death. In submerged ΔfluG cultures mimicking insect haemolymph, largely increased blastospore production concurred with drastic up-regulation of the CDP genes brlA and abaA, which was associated with earlier up-regulation of most flb genes in the cultures. Our results unveil an essentiality of fluG for fungal adaptation to insect-pathogenic lifecycle and suggest the other fluG-like gene to act as an alternative player in the UDA pathway of B. bassiana.


Asunto(s)
Beauveria , Animales , Beauveria/genética , Proteínas Fúngicas , Insectos , Esporas Fúngicas/genética , Virulencia
3.
Environ Microbiol ; 20(1): 169-185, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28967173

RESUMEN

The fungal insect pathogen Beauveria bassiana has the blue-light photoreceptor VIVID (VVD) but lacks a pigmentation pattern to trace its light responses. Here, we show that the fungal vvd is transcriptionally expressed, and linked to other blue/red photoreceptor genes, in a daylight length-dependent manner. GFP-tagged VVD fusion protein was localized to periphery, cytoplasm and vacuoles of hyphal cells in light/dark (L:D) cycles of 24:0 and 16:8 and aggregated in cytoplasm with shortening daylight until transfer into nuclei in full darkness. Deletion of vvd caused more reduced (91%) conidiation capacity in L:D 12:12 cycle of blue light (450/480 nm) than of yellow-to-red (540-760 nm) and white lights (∼70%). The conidiation defect worsened with shortened daylight in different L:D cycles of white light, coinciding well with drastic repression of key activator genes in central development pathway. Intriguingly, the deletion mutant displayed blocked secretion of cuticle-degrading Pr1 proteases, retarded dimorphic transition in insect haemocoel, and hence a lethal action twice longer than those for control strains against Galleria mellonella regardless of the infection passing or bypassing insect cuticle. Conclusively, VVD sustains normal conidiation in a daylight length-dependent manner and acts as a vital virulence factor in B. bassiana.


Asunto(s)
Beauveria/patogenicidad , Mariposas Nocturnas/microbiología , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Animales , Oscuridad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Luz , Virulencia , Factores de Virulencia
4.
J Fungi (Basel) ; 8(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35448565

RESUMEN

The fluffy genes flbA-flbE are well-known players in the upstream developmental activation pathway that activates the key gene brlA of central developmental pathway (CDP) to initiate conidiation in Aspergillus nidulans. Here, we report insignificant roles of their orthologs in radial growth of Beauveria bassiana under normal culture conditions and different stresses although flbA and flbD were involved in respective responses to heat shock and H2O2. Aerial conidiation level was lowered in the deletion mutants of flbB and flbE (~15%) less than of flbA and flbC (~30%), in which the key CDP genes brlA and abaA were repressed consistently during normal incubation. The CDP-controlled blastospore production in submerged cultures mimicking insect hemolymph was abolished in the flbA mutant with brlA and abaA being sharply repressed, and decreased by 55% in the flbC mutant with only abaA being downregulated. The fungal virulence against a model insect was attenuated in the absence of flbA more than of flbC irrespective of normal cuticle infection or cuticle-bypassing infection (intrahemocoel injection). These findings unravel more important role of flbA than of flbC, but null roles of flbB/D/E, in B. bassiana's insect-pathogenic lifecycle and a scenario distinctive from that in A.nidulans.

5.
Environ Microbiol Rep ; 14(5): 719-731, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35851566

RESUMEN

The large family of C2H2-type zinc finger transcription factors (TFs) comprise the Kruppel-like factors (KLFs) that evolved relatively late in eukaryotes but remain unexplored in filamentous fungi. Here, we report that an orthologue (BbKlf1) of yeast Klf1 mediating cell wall integrity (CWI) is a wide-spectrum TF evidently localized in nucleus and cytoplasm in Beauveria bassiana. BbKlf1 features conserved domains and multiple DNA-binding motifs predicted to bind multiple promoter DNA fragments of target genes across asexual developmental and stress-responsive pathways. Despite limited impact on normal colony growth, deletion of Bbklf1 resulted in impaired CWI and hypersensitivity to Congo red-induced cell wall stress. Also, the deletion mutant was severely compromised in tolerance to oxidative and osmotic stresses, hyphal septation and differentiation, conidiation capacity (reduced by 95%), conidial quality (viability and hydrocarbon epitope pattern) and virulence. Importantly, these phenotypes correlated well with sharply repressed or nearly abolished expressions of those genes required for or involved in chitin biosynthesis, antioxidant activity, cell division and differentiation, aerial conidiation and conidial maturation. These findings indicate an essentiality of BbKlf1 for the asexual and insect-pathogenic lifecycles of B. bassiana and a novel scenario much beyond the yeast orthologue-mediated CWI, suggesting important roles of its orthologues in filamentous fungi.


Asunto(s)
Beauveria , Proteínas Fúngicas/genética , Factores de Transcripción de Tipo Kruppel/genética , Antioxidantes , Quitina , Rojo Congo , Epítopos , Proteínas Fúngicas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Esporas Fúngicas/genética
6.
mSystems ; 7(4): e0031822, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862810

RESUMEN

The central developmental pathway (CDP) activator gene brlA is activated by the upstream genes fluG and flbA-flbE in Aspergillus nidulans. Increasing evidences of fungal genome divergence make it necessary to clarify whether such genetic principles fit Pezizomycotina. Previously, fluG disruption resulted in limited conidiation defect and little effect on the expression of brlA and flbA-flbE in Beauveria bassiana possessing the other FluG-like regulator FlrA. Here, single-disruption (SD) mutants of flrA and double-disruption (DD) mutants of flrA and fluG were analyzed to clarify whether FlrA and FluG are upstream regulators of key CDP genes. Despite similar subcellular localization, no protein-protein interaction was detected between FlrA and FluG, suggesting mutual independence. Three flrA SD mutants showed phenotypes similar to those previously described for ΔfluG, including limited conidiation defect, facilitated blastospore production, impaired spore quality, blocked host infection, delayed proliferation in vivo, attenuated virulence, and increased sensitivities to multiple stresses. Three DD mutants resembled the SD mutants in all phenotypes except more compromised pathogenicity and tolerance to heat shock- or calcofluor white-induced stress. No CDP gene appeared in 1,622 and 2,234 genes dysregulated in the ΔflrA and ΔfluG mutants, respectively. The majority (up/down ratio: 540:875) of those dysregulated genes were co-upregulated or co-downregulated at similar levels in the two mutants. These findings unravel novel roles for flrA and fluG in coregulating manifold gene sets vital for fungal adaptation to insect-pathogenic lifestyle and environment but not involved in CDP activation. IMPORTANCE FluG is a core regulator upstream of central developmental pathway (CDP) in Aspergillus nidulans but multiple FluG-like regulators (FLRs) remain functionally uncharacterized in ascomycetes. Our previous study revealed no role for FluG in the CDP activation and an existence of sole FLR (FlrA) in an insect-pathogenic fungus. This study reveals a similarity of FlrA to FluG in domain architecture and subcellular localization. Experimental data from analyses of targeted single- and double-gene knockout mutants demonstrate similar roles of FrlA and FluG in stress tolerance and infection cycle but no role of either in CDP activation. Transcriptomic analyses reveal that FlrA and FluG coregulate a large number of same genes at similar levels. However, the regulated genes include no key CDP gene. These findings uncover that FlrA and FluG play similar roles in the fungal adaptation to insect-pathogenic lifestyle and environment but no role in the activation of CDP.


Asunto(s)
Genoma Fúngico , Insectos , Animales , Insectos/genética , Perfilación de la Expresión Génica , Proteínas Fúngicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA