Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298912

RESUMEN

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Asunto(s)
Animales Salvajes/virología , Enfermedades Transmisibles Emergentes/virología , Reservorios de Enfermedades , Mamíferos/virología , Viroma , Animales , China , Filogenia , Zoonosis
2.
Nat Immunol ; 17(3): 241-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26692175

RESUMEN

The gene encoding PTEN is one of the most frequently mutated tumor suppressor-encoding genes in human cancer. While PTEN's function in tumor suppression is well established, its relationship to anti-microbial immunity remains unknown. Here we found a pivotal role for PTEN in the induction of type I interferon, the hallmark of antiviral innate immunity, that was independent of the pathway of the kinases PI(3)K and Akt. PTEN controlled the import of IRF3, a master transcription factor responsible for IFN-ß production, into the nucleus. We further identified a PTEN-controlled negative phosphorylation site at Ser97 of IRF3 and found that release from this negative regulation via the phosphatase activity of PTEN was essential for the activation of IRF3 and its import into the nucleus. Our study identifies crosstalk between PTEN and IRF3 in tumor suppression and innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Fosfohidrolasa PTEN/inmunología , Infecciones por Respirovirus/inmunología , Infecciones por Rhabdoviridae/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular , Proliferación Celular , Citocinas/inmunología , Células Dendríticas/inmunología , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Factor 3 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/genética , Células MCF-7 , Macrófagos/inmunología , Espectrometría de Masas , Ratones , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Sendai , Vesiculovirus
3.
EMBO Rep ; 24(10): e56948, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672005

RESUMEN

The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.

4.
Proc Natl Acad Sci U S A ; 119(49): e2205013119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442102

RESUMEN

Zika virus (ZIKV) targets the neural progenitor cells (NPCs) in brain during intrauterine infections and consequently causes severe neurological disorders, such as microcephaly in neonates. Although replicating in the cytoplasm, ZIKV dysregulates the expression of thousands of host genes, yet the detailed mechanism remains elusive. Herein, we report that ZIKV encodes a unique DNA-binding protein to regulate host gene transcription in the nucleus. We found that ZIKV NS5, the viral RNA polymerase, associates tightly with host chromatin DNA through its methyltransferase domain and this interaction could be specifically blocked by GTP. Further study showed that expression of ZIKV NS5 in human NPCs markedly suppressed the transcription of its target genes, especially the genes involved in neurogenesis. Mechanistically, ZIKV NS5 binds onto the gene body of its target genes and then blocks their transcriptional elongation. The utero electroporation in pregnant mice showed that NS5 expression significantly disrupts the neurogenesis by reducing the number of Sox2- and Tbr2-positive cells in the fetal cortex. Together, our findings demonstrate a molecular clue linking to the abnormal neurodevelopment caused by ZIKV infection and also provide intriguing insights into the interaction between the host cell and the pathogenic RNA virus, where the cytoplasmic RNA virus encodes a DNA-binding protein to control the transcription of host cell in the nuclei.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Femenino , Embarazo , Animales , Ratones , Cromatina/genética , Virus Zika/genética , Infección por el Virus Zika/genética , ADN , ARN Polimerasas Dirigidas por ADN/genética , Transcripción Genética
5.
J Med Virol ; 96(2): e29411, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38285434

RESUMEN

Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2'-O-ribose methyltransferases (N7-MTase and 2'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , Metiltransferasas/genética , SARS-CoV-2/genética , Metilación de ARN , Caperuzas de ARN
6.
EMBO Rep ; 23(5): e54453, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35343634

RESUMEN

The NLRP3-directed inflammasome complex is crucial for the host to resist microbial infection and monitor cellular damage. However, the hyperactivation of NLRP3 inflammasome is implicated in pathogenesis of inflammatory diseases, including inflammatory bowel disease (IBD). Autophagy and autophagy-related genes are closely linked to NLRP3-mediated inflammation in these inflammatory disorders. Here, we report that CCDC50, a novel autophagy cargo receptor, negatively regulates NLRP3 inflammasome assembly and suppresses the cleavage of pro-caspase-1 and interleukin 1ß (IL-1ß) release by delivering NLRP3 for autophagic degradation. Transcriptome analysis showed that knockdown of CCDC50 results in upregulation of signaling pathways associated with autoinflammatory diseases. CCDC50 deficiency leads to enhanced proinflammatory cytokine response triggered by a wide range of endogenous and exogenous NLRP3 stimuli. Ccdc50-deficient mice are more susceptible to dextran sulfate (DSS)-induced colitis and exhibit more severe gut inflammation with elevated NLRP3 inflammasome activity. These results illustrate the physiological significance of CCDC50 in the pathogenicity of inflammatory diseases, suggesting protective roles of CCDC50 in keeping gut inflammation under control.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Autofagia , Sulfato de Dextran/toxicidad , Inflamasomas/genética , Inflamación , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431678

RESUMEN

Nuclear factor κB (NF-κB)-mediated signaling pathway plays a crucial role in the regulation of inflammatory process, innate and adaptive immune responses. The hyperactivation of inflammatory response causes host cell death, tissue damage, and autoinflammatory disorders, such as sepsis and inflammatory bowel disease. However, how these processes are precisely controlled is still poorly understood. In this study, we demonstrated that ankyrin repeat and suppressor of cytokine signaling box containing 1 (ASB1) is involved in the positive regulation of inflammatory responses by enhancing the stability of TAB2 and its downstream signaling pathways, including NF-κB and mitogen-activated protein kinase pathways. Mechanistically, unlike other members of the ASB family that induce ubiquitination-mediated degradation of their target proteins, ASB1 associates with TAB2 to inhibit K48-linked polyubiquitination and thereby promote the stability of TAB2 upon stimulation of cytokines and lipopolysaccharide (LPS), which indicates that ASB1 plays a noncanonical role to further stabilize the target protein rather than induce its degradation. The deficiency of Asb1 protects mice from Salmonella typhimurium- or LPS-induced septic shock and increases the survival of mice. Moreover, Asb1-deficient mice exhibited less severe colitis and intestinal inflammation induced by dextran sodium sulfate. Given the crucial role of ASB proteins in inflammatory signaling pathways, our study offers insights into the immune regulation in pathogen infection and inflammatory disorders with therapeutic implications.


Asunto(s)
Colitis/inmunología , FN-kappa B/inmunología , Procesamiento Proteico-Postraduccional , Infecciones por Salmonella/inmunología , Choque Séptico/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/mortalidad , Sulfato de Dextran , Genes Reporteros , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Lipopolisacáridos , Luciferasas/genética , Luciferasas/inmunología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/inmunología , Ratones , Ratones Noqueados , FN-kappa B/genética , Unión Proteica , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/mortalidad , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Choque Séptico/inducido químicamente , Choque Séptico/genética , Choque Séptico/mortalidad , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/genética , Análisis de Supervivencia , Ubiquitinación
8.
Molecules ; 29(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792173

RESUMEN

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Asunto(s)
Antivirales , Inhibidores Enzimáticos , Metiltransferasas , Simulación de Dinámica Molecular , SARS-CoV-2 , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Metiltransferasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Antivirales/farmacología , Antivirales/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Sitios de Unión , Exorribonucleasas
9.
J Med Virol ; 95(6): e28832, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37264691

RESUMEN

The protein activator of protein kinase R (PKR) (PACT) has been shown to play a crucial role in stimulating the host antiviral response through the activation of PKR, retinoic acid-inducible gene I, and melanoma differentiation-associated protein 5. Whether PACT can inhibit viral replication independent of known mechanisms is still unrevealed. In this study, we show that, like many viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks GSK-3ß to facilitate its replication. GSK-3ß-induced phosphorylation on N protein increased the interaction between N protein and nsp3. Thus, GSK-3ß-N-nsp3 cascade promotes viral replication. Although SARS-CoV-2 can sabotage the activation of AKT, the upstream proteins suppressing the activation of GSK-3ß, we found that the host can use PACT, another protein kinase, instead of AKT to decrease the activity of GSK-3ß and the interaction between PACT and GSK-3ß is enhanced upon viral infection. Moreover, PACT inhibited the activity of GSK-3ß independent of its well-studied double-stranded RNA binding and PKR activating ability. In summary, this study identified an unknown function of PACT in inhibiting SARS-CoV-2 replication through the blockage of GSK-3ß-N-nsp3 cascade.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , SARS-CoV-2/metabolismo , Línea Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación
10.
J Med Virol ; 94(7): 3017-3031, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35324008

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has caused severe public health crises and heavy economic losses. Limited knowledge about this deadly virus impairs our capacity to set up a toolkit against it. Thus, more studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology are urgently needed. Reverse genetics systems, including viral infectious clones and replicons, are powerful platforms for viral research projects, spanning many aspects such as the rescues of wild-type or mutant viral particles, the investigation of viral replication mechanism, the characterization of viral protein functions, and the studies on viral pathogenesis and antiviral drug development. The operations on viral infectious clones are strictly limited in the Biosafety Level 3 (BSL3) facilities, which are insufficient, especially during the pandemic. In contrast, the operation on the noninfectious replicon can be performed in Biosafety Level 2 (BSL2) facilities, which are widely available. After the outbreak of COVID-19, many reverse genetics systems for SARS-CoV-2, including infectious clones and replicons are developed and given plenty of options for researchers to pick up according to the requirement of their research works. In this review, we summarize the available reverse genetics systems for SARS-CoV-2, by highlighting the features of these systems, and provide a quick guide for researchers, especially those without ample experience in operating viral reverse genetics systems.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Replicón , Genética Inversa , SARS-CoV-2/genética
11.
J Med Virol ; 94(11): 5574-5581, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35869417

RESUMEN

Mortality in coronavirus disease 2019 (COVID-19) patients has been linked to the presence of a "cytokine storm" induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which involves elevated levels of circulating cytokines and immune-cell hyperactivation. Targeting cytokines during the management of COVID-19 patients has the potential to improve survival rates and reduce mortality. Although cytokine blockers and immune-host modulators are currently being tested in severely ill COVID-19 patients to cope with the overwhelming systemic inflammation, there is not too many successful cases, thus finding new cytokine blockers to attenuate the cytokine storm syndrome is meaningful. In this paper, we significantly attenuated the inflammatory responses induced by mouse hepatitis viruses A59 and SARS-CoV-2 through a soluble DR5-Fc (sDR5-Fc) chimeric protein that blocked the TNF-related apoptosis-inducing ligand-death receptor 5 (TRAIL-DR5) interaction. Our findings indicates that blocking the TRAIL-DR5 pathway through the sDR5-Fc chimeric protein is a promising strategy to treat COVID-19 severe patients requiring intensive care unit  admission or with chronic metabolic diseases.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , SARS-CoV-2 , Animales , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/prevención & control , Citocinas/metabolismo , Ratones , Proteínas Recombinantes de Fusión/genética
12.
J Med Virol ; 94(8): 3605-3612, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35355296

RESUMEN

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the causative agent of the current coronavirus disease 2019 pandemic. Development of animal models that parallel the clinical and pathologic features of disease are highly essential to understanding the pathogenesis of SARS-CoV-2 infection and the development of therapeutics and prophylactics. Several mouse models that express the human angiotensin converting enzyme 2 (hACE2) have been created, including transgenic and knock-in strains, and viral vector-mediated delivery of hACE2. However, the comparative pathology of these mouse models infected with SARS-CoV-2 are unknown. Here, we perform systematic comparisons of the mouse models including K18-hACE2 mice, KI-hACE2 mice, Ad5-hACE2 mice and CAG-hACE2 mice, which revealed differences in the distribution of lesions and the characteristics of pneumonia induced. Based on these observations, the hACE2 mouse models meet different needs of SARS-CoV-2 researches. The similarities or differences among the model-specific pathologies may help in better understanding the pathogenic process of SARS-CoV-2 infection and aiding in the development of effective medications and prophylactic treatments for SARS-CoV-2.


Asunto(s)
COVID-19 , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Pandemias , Peptidil-Dipeptidasa A/genética , SARS-CoV-2
13.
J Med Virol ; 94(9): 4193-4205, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35570330

RESUMEN

As one of the most rapidly evolving proteins of the genus Betacoronavirus, open reading frames (ORF8's) function and potential pathological consequence in vivo are still obscure. In this study, we show that the secretion of ORF8 is dependent on its N-terminal signal peptide sequence and can be inhibited by reactive oxygen species scavenger and endoplasmic reticulum-Golgi transportation inhibitor in cultured cells. To trace the effect of its possible in vivo secretion, we examined the plasma samples of coronavirus disease 2019 (COVID-19) convalescent patients and found that the patients aged from 40 to 60 had higher antibody titers than those under 40. To explore ORF8's in vivo function, we administered the mice with ORF8 via tail-vein injection to simulate the circulating ORF8 in the patient. Although no apparent difference in body weight, food intake, and vitality was detected between vehicle- and ORF8-treated mice, the latter displayed morphological abnormalities of testes and epididymides, as indicated by the loss of the central ductal lumen accompanied by a decreased fertility in 5-week-old male mice. Furthermore, the analysis of gene expression in the testes between vehicle- and ORF8-treated mice identified a decreased expression of Col1a1, the loss of which is known to be associated with mice's infertility. Although whether our observation in mice could be translated to humans remains unclear, our study provides a potential mouse model that can be used to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the human reproductive system.


Asunto(s)
COVID-19 , Infertilidad Masculina , SARS-CoV-2 , Proteínas Virales , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Fertilidad , Humanos , Infertilidad Masculina/virología , Masculino , Ratones , Sistemas de Lectura Abierta
14.
Bioorg Med Chem Lett ; 55: 128445, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758374

RESUMEN

Human macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine that plays multiple pleiotropic functions. It is considered as a promising therapeutic target for the infectious, autoimmune, and cardiovascular diseases and cancers. The development of MIF inhibitors has not been translated into clinical success despite decades of research. Given the time and cost of developing new drugs, existing drugs with clarified safety and pharmacokinetics are explored for their potential as novel MIF inhibitors. This study identified five known drugs that could inhibit MIF's tautomerase activity and MIF-mediated cell chemotaxis in RAW264.7 cells. It was found that compounds D2 (histamine), D5 (metaraminol), and D8 (nebivolol) exhibited micromolar-range inhibition potency close to the positive control ISO-1. Kinetics and the mechanism for inhibition were subsequently determined. Moreover, the detailed inhibitor-binding patterns were investigated by X-ray crystallography, computational molecular docking, and structure-based analysis. Therefore, this study elucidates the molecular mechanism of repurposed drugs acting on MIF and provides a structural foundation for lead optimization to promote the clinical development of MIF-targeted drugs.


Asunto(s)
Histamina/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Metaraminol/farmacología , Nebivolol/farmacología , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Reposicionamiento de Medicamentos , Histamina/química , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Metaraminol/química , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Nebivolol/química , Células RAW 264.7 , Relación Estructura-Actividad
15.
J Virol ; 94(6)2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33208452

RESUMEN

Mites are notorious for being vectors transmitting infectious pathogens and source of allergens causing allergic conditions in animals and humans. However, despite their huge impact on public health, the virome of mites remains unknown. Here we characterized the virus diversity and abundance of 14 species of medically important mites based on total RNA sequencing data sets generated in this study as well as those deposited in the Sequence Read Archive (SRA) database. A total of 47 genetically distinct viruses were identified and classified into 17 virus families or virus super-groups, and the viral sequences accounted for as much as 29.67% of total non-rRNA transcriptome in one mite library. The most commonly identified viruses are members of Picornavirales, among which we revealed more than one type of viruses that are evolutionarily related to dicistronic viruses but contain a single open reading frame, thus likely representing a recent example of host (i.e., mite)-related parallel evolution from dicistronic to monocistronic genomic form within the family Dicistroviridae To our best knowledge, this is the first time to perform comprehensive and systematic screening of RNA virome in medically important mites including house dust mites (HDM). Overall, the RNA virome identified here provides not only significant insights into the diversity and evolution of RNA viruses in mites, but also a solid knowledge base for studying their roles in human diseases.IMPORTANCE Mites are important group of arthropods that are associated with a variety of human diseases including scrub typhus and asthma. However, it remains unclear whether or not mites carry viruses that might play a role in human infections or allergic disease. In this study, we used a total transcriptomics approach to characterize and compare the complete RNA virome within mites that are relevant to human health and diseases. Specifically, our data revealed a large diversity, a high abundance, and a flexible genomic evolution for these viruses. Although most of the viruses identified here are unknown to associate with human infectious disease, the abundant presence of viral RNAs may play an immunomodulatory role in the development of allergic reactions such as asthma during environmental exposure to mite allergens, and therefore provide important insights into the mite-induced allergy and preparation of mite allergen vaccines.

16.
PLoS Pathog ; 15(10): e1008079, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31603949

RESUMEN

Interferon-inducible p200 family protein IFI204 was reported to be involved in DNA sensing, and subsequently induces the production of type I interferons and proinflammatory mediators. However, its function in the regulation of antiviral innate immune signaling pathway remains unclear. Here we reported a novel role of IFI204 that specifically inhibits the IRF7-mediated type I interferons response during viral infection. IFI204 and other p200 family proteins are highly expressed in mouse hepatitis coronavirus-infected bone marrow-derived dendritic cells. The abundant IFI204 could significantly interact with IRF7 in nucleus by its HIN domain and prevent the binding of IRF7 with its corresponding promoter. Moreover, other p200 family proteins that possess HIN domain could also inhibit the IRF7-mediated type I interferons. These results reveal that, besides the positive regulation function in type I interferon response at the early stage of DNA virus infection, the interferon-inducible p200 family proteins such as IFI204 could also negatively regulate the IRF7-mediated type I interferon response after RNA virus infection to avoid unnecessary host damage from hyper-inflammatory responses.


Asunto(s)
Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/inmunología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Células 3T3 , Células A549 , Animales , Línea Celular , Infecciones por Coronavirus/patología , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Inflamación/patología , Factor 7 Regulador del Interferón/genética , Ratones , Células RAW 264.7
17.
Chin J Cancer Res ; 33(3): 352-363, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34321832

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) development among hepatitis B surface antigen (HBsAg) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We aimed to construct a risk-stratified HCC prediction model for HBsAg-positive male adults. METHODS: HBsAg-positive males of 35-69 years old (N=6,153) were included from a multi-center population-based liver cancer screening study. Randomly, three centers were set as training, the other three centers as validation. Within 2 years since initiation, we administrated at least two rounds of HCC screening using B-ultrasonography and α-fetoprotein (AFP). We used logistic regression models to determine potential risk factors, built and examined the operating characteristics of a point-based algorithm for HCC risk prediction. RESULTS: With 2 years of follow-up, 302 HCC cases were diagnosed. A male-ABCD algorithm was constructed including participant's age, blood levels of GGT (γ-glutamyl-transpeptidase), counts of platelets, white cells, concentration of DCP (des-γ-carboxy-prothrombin) and AFP, with scores ranging from 0 to 18.3. The area under receiver operating characteristic was 0.91 (0.90-0.93), larger than existing models. At 1.5 points of risk score, 26.10% of the participants in training cohort and 14.94% in validation cohort were recognized at low risk, with sensitivity of identifying HCC remained 100%. At 2.5 points, 46.51% of the participants in training cohort and 33.68% in validation cohort were recognized at low risk with 99.06% and 97.78% of sensitivity, respectively. At 4.5 points, only 20.86% of participants in training cohort and 23.73% in validation cohort were recognized at high risk, with positive prediction value of 22.85% and 12.35%, respectively. CONCLUSIONS: Male-ABCD algorithm identified individual's risk for HCC occurrence within short term for their HCC precision surveillance.

18.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G162-G173, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604033

RESUMEN

Hepatitis B virus (HBV) exploits multiple strategies to evade host immune surveillance. Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling plays a critical role in regulating T cell homeostasis. However, it remains largely unknown as to how HBV infection elevates PD-L1 expression in hepatocytes. A mouse model of HBV infection was established by hydrodynamic injection with a vector containing 1.3-fold overlength HBV genome (pHBV1.3) via the tail vein. Coculture experiments with HBV-expressing hepatoma cells and Jurkat T cells were established in vitro. We observed significant decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and increase in ß-catenin/PD-L1 expression in liver tissues from patients with chronic hepatitis B and mice subjected to pHBV1.3 hydrodynamic injection. Mechanistically, decrease in PTEN enhanced ß-catenin/c-Myc signaling and PD-L1 expression in HBV-expressing hepatoma cells, which in turn augmented PD-1 expression, lowered IL-2 secretion, and induced T cell apoptosis. However, ß-catenin disruption inhibited PTEN-mediated PD-L1 expression, which was accompanied by decreased PD-1 expression, and increased IL-2 production in T cells. Luciferase reporter assays revealed that c-Myc stimulated transcriptional activity of PD-L1. In addition, HBV X protein (HBx) and HBV polymerase (HBp) contributed to PTEN downregulation and ß-catenin/PD-L1 upregulation. Strikingly, PTEN overexpression in hepatocytes inhibited ß-catenin/PD-L1 signaling and promoted HBV clearance in vivo. Our findings suggest that HBV-triggered PTEN/ß-catenin/c-Myc signaling via HBx and HBp enhances PD-L1 expression, leading to inhibition of T cell response, and promotes HBV immune evasion.NEW & NOTEWORTHY This study demonstrates that during HBV infection, HBV can increase PD-L1 expression via PTEN/ß-catenin/c-Myc signaling pathway, which in turn inhibits T cell response and ultimately promotes HBV immune evasion. Targeting this signaling pathway is a potential strategy for immunotherapy of chronic hepatitis B.


Asunto(s)
Antígeno B7-H1/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/metabolismo , Hepatocitos/enzimología , Evasión Inmune , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/enzimología , beta Catenina/metabolismo , Animales , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Productos del Gen pol/genética , Productos del Gen pol/metabolismo , Células Hep G2 , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Células Jurkat , Activación de Linfocitos , Masculino , Ratones Endogámicos BALB C , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/virología , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales
19.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30463970

RESUMEN

Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.


Asunto(s)
Virus de la Influenza A/genética , Gripe Aviar/genética , ARN Interferente Pequeño/farmacología , Animales , Antivirales/farmacología , Aves , Línea Celular , ARN Helicasas DEAD-box , Células Dendríticas/efectos de los fármacos , Células Dendríticas/virología , Perros , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/genética , Gripe Humana/virología , Interferones/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/virología , Células de Riñón Canino Madin Darby , Cultivo Primario de Células , ARN Interferente Pequeño/genética , Ribonucleasa III , Replicación Viral/efectos de los fármacos
20.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30404796

RESUMEN

Viruses have adopted diverse strategies to suppress antiviral responses. Hepatitis B virus (HBV), a virus that is prevalent worldwide, manipulates the host's innate immune system to evade scavenging. It is reported that the hepatitis B e antigen (HBeAg) can interfere with NF-κB activity, which then leads to high viral loads, while HBV with the G1896A mutation remains infectious without the production of HBeAg but can induce more severe proinflammatory response and liver damage. The aim of current work was to study the molecular mechanism by which HBeAg suppresses interleukin-1ß (IL-1ß)-stimulated NF-κB activity, which leads to the suppression of the innate immune responses to HBV infection. Our study revealed that HBeAg could interact with NEMO, a regulatory subunit associated with IκB kinase, which regulates the activation of NF-κB. HBeAg suppressed the IL-1ß-induced tumor necrosis factor (TNF)-associated factor 6 (TRAF6)-dependent K63-linked ubiquitination of NEMO, thereby downregulating NF-κB activity and promoting virus replication. We further demonstrated the inhibitory effect of HBeAg on the NF-κB signaling pathway using primary human hepatocytes, HBV-infected HepG2-NTCP cells, and clinical liver samples. Our study reveals a molecular mechanism whereby HBeAg suppresses IL-1ß-induced NF-κB activation by decreasing the TRAF6-dependent K63-linked ubiquitination of NEMO, which may thereby enhance HBV replication and promote a persistent infection.IMPORTANCE The role of HBeAg in inflammatory responses during the infection of hepatitis B virus (HBV) is not fully understood, and several previous reports with regard to the NF-κB pathway are controversial. In this study, we showed that HBeAg could suppress both Toll-like receptor 2 (TLR2)- and IL-1ß-induced activation of NF-κB in cells and clinical samples, and we further revealed novel molecular mechanisms. We found that HBeAg can associate with NEMO, the regulatory subunit for IκB kinase (IKK) that controls the NF-κB signaling pathway, and thereby inhibits TRAF6-mediated K63-linked ubiquitination of NEMO, resulting in downregulation of NF-κB activity and promotion of virus replication. In contrast, the HBeAg-negative HBV mutant can induce higher levels of NF-κB activity. These results are important for understanding the HBV-induced pathogenesis of chronic hepatitis and indicate that different clinical measures should be considered to treat HBeAg-positive and HBeAg-negative infections. Our findings represent a conceptual advance in HBV-related suppression of NF-κB signaling.


Asunto(s)
Antígenos e de la Hepatitis B/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis B/inmunología , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Adulto , Femenino , Células HEK293 , Células HeLa , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/inmunología , Interacciones Huésped-Patógeno , Humanos , Quinasa I-kappa B/química , Inmunidad Innata , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA