Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Brain Dis ; 36(8): 2329-2341, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34665375

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases among the elderly people. The T2DM increases the risk of cardio-cerebrovascular disease (CCD), and the main pathological change of the CCD is atherosclerosis (AS). Meanwhile, the carbonic anhydrases (CAs) are involved in the formation and progression of plaques in AS. However, the exact physiological mechanism of carbonic anhydrase III (CAIII) has not been clear yet, and there are also no correlation study between CAIII protein and T2DM with CCD. The 8-week old diabetic mice (db/db-/- mice) and wild-type mice (wt mice) were feed by a normal diet till 32 weeks, and detected the carotid artery vascular opening angle using the method of biomechanics; The changes of cerebral cortex and myocardium were watched by the ultrastructure, and the autophagy were observed by electron microscope; The tissue structure, inflammation and cell injury were observed by Hematoxylin and eosin (HE) staining; The apoptosis of cells were observed by TUNEL staining; The protein levels of CAIII, IL-17, p53 were detected by immunohistochemical and Western Blot, and the Beclin-1, LC3, NF-κB were detected by Western Blot. All statistical analysis is performed using PRISM software. Compared with wt mice, db/db-/- mice' carotid artery open angle increased significantly. Electron microscope results indicated that autophagy in db/db-/- mice cerebral cortex and heart tissue decreased and intracellular organelle ultrastructure were damaged. HE staining indicated that, db/db-/- mice' cerebral cortex and heart tissue stained lighter, inflammatory cells infiltration, cell edema were obvious, myocardial fibers were disorder, and myocardial cells showed different degrees of degeneration. Compared with wt mice, TUNEL staining showed that there was obviously increase in db/db-/- mice cortex and heart tissue cell apoptosis. The results of immunohistochemistry and Western Blot indicated that CAIII, Beclin-1 and LC3II/I expression levels conspicuously decreased in cortex and heart tissue of db/db-/- mice, and the expression level of IL-17, NF-κB and p53 obviously increased. The carotid artery' vascular stiffness was increased and which was probably related with formation of AS in diabetic mice. And the autophagy participated in the occurrence and development of diabetic CCD. CAIII protein might somehow be involved in the regulation of autophagy probably through affecting cell apoptosis and inflammation, but the underlying mechanism remains to be further studied.


Asunto(s)
Anhidrasa Carbónica III , Trastornos Cerebrovasculares , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Autofagia , Ratones
2.
Biochem Biophys Res Commun ; 524(3): 525-532, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32014256

RESUMEN

Diabetes mellitus (DM) is currently a major global health problem, which is associated with the development of cognitive dysfunction. However, although numerous clinical drugs for hyperglycemia have been used at present, safer and more effective therapeutic intervention strategies for diabetic cognitive impairments are still a huge challenge. Recently, several studies have indicated that a novel class of branched palmitic acid esters of hydroxyl stearic acids (PAHSAs) may have anti-diabetes and anti-inflammatory effects in insulin-resistant mice. Herein, whether the 9-PAHSA that one of the PAHSAs can attenuates DM-associated cognitive impairment in a mouse model of type 2 diabetes has been investigated. Our results showed that 9-PAHSA mildly prevented deficits of spatial working memory in Y-maze test while reversed the preference bias toward novel mice in Social choice test. Furthermore, the effect of REST on cognitive impairment of diabetes was explored for the first time. It was found that the expression of REST in diabetic mice increased, and the expression of target protein BDNF (Brain-derived neurotrophic factor) was decreased. After administration of 9-PAHSA, the situation was reversed. In summary, we conclude that exogenous supplement of 9-PAHSA can improve DM-related cognitive impairment to some extent, and the protective effect may be associated with decreased REST/NRSF (repressor element-1 silencing transcription factor/neuron-restrictive silence factor) and upregulated BDNF expression in frontal cortex.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/fisiopatología , Ácido Palmítico/uso terapéutico , Ácidos Esteáricos/uso terapéutico , Envejecimiento/sangre , Envejecimiento/patología , Animales , Conducta Animal , Glucemia/metabolismo , Peso Corporal , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/sangre , Diabetes Mellitus Experimental/sangre , Conducta Exploratoria , Masculino , Trastornos de la Memoria/sangre , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/fisiopatología , Ratones , Proteínas Represoras/metabolismo , Conducta Social , Memoria Espacial
3.
Acta Pharmacol Sin ; 39(10): 1582-1589, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29795362

RESUMEN

Both in vivo and in vitro studies have shown the beneficial effects of the delta-opioid receptor (DOR) on neurodegeneration in hypoxia/ischemia. We previously reported that DOR stimulation with [(D-Ala2, D-Leu5) enkephalin] (DADLE), a potent DOR agonist, for both a short (minutes) and long (days) time has notable protective effects against sodium azide (NaN3)-induced cell injury in primary cultured rat cortical neurons. We further demonstrated that short-term DADLE stimulation increased neuronal survival through the PKC-mitochondrial ERK pathway. However, the mechanisms underlying long-term neuroprotection by DADLE remain unclear. Here, we showed that DOR stimulation with DADLE (0.1 µmol/L) for 2 d selectively activates the PI3K/Akt/NF-κB pathway in NaN3-treated neurons; this activation increased Bcl-2 expression, attenuated Cyto c release and promoted neuronal survival. Further investigation revealed that sustained DADLE stimulation increased Bcl-2 expression by enhancing NF-κB binding to the Bcl-2 promoter and upregulating the histone acetylation levels of the Bcl-2 promoter. Our results demonstrate that prolonged DADLE exposure epigenetically promotes Bcl-2 expression and elicits neuroprotective effects in the NaN3 model via the PI3K/Akt/NF-κB pathway.


Asunto(s)
Leucina Encefalina-2-Alanina/farmacología , Epigénesis Genética/efectos de los fármacos , Neuroprotección/fisiología , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Citocromos c/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptores Opioides delta/agonistas , Regulación hacia Arriba
4.
Metab Brain Dis ; 33(6): 1887-1897, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187180

RESUMEN

To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.


Asunto(s)
Envejecimiento/metabolismo , Beclina-1/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/uso terapéutico , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Beclina-1/agonistas , Disfunción Cognitiva/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relación Dosis-Respuesta a Droga , Ginkgo biloba , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Sheng Li Xue Bao ; 66(6): 691-701, 2014 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-25516518

RESUMEN

The purpose of this study is to explore the fate and effect of human embryonic neural stem cells (hNSCs) after transplantation into ipsilateral lateral ventricle of stroke rats. Adult rats were exposed to one-hour transient middle cerebral artery occlusion (MCAO), and then hNSCs were transplanted into ipsilateral lateral ventricle 7 days after reperfusion. Infarct volume was calculated by cresyl violet staining. The improvements of neural functions were assessed by behavioral tests. Immunofluorescence staining was performed to observe the migration and differentiation of transplanted hNSCs. The results showed that transplanted hNSCs significantly reduced ischemia-induced infarction in MCAO rats, and improved neural functional restoration when assessed by rotarod, footfault and corner-turn tests. The grafted cells migrated predominantly to several specific brain regions, such as corpus callosum and peri-infarct area. Furthermore, these cells differentiated into oligodendrocytes and astrocytes in corpus callosum, and neurons in peri-infarct parenchyma. These results suggest that transplanted hNSCs through lateral ventricle of the ischemic side may exert effective therapeutic effects on stroke rats via migration and differentiation in specific brain regions.


Asunto(s)
Infarto de la Arteria Cerebral Media/terapia , Células-Madre Neurales/trasplante , Animales , Astrocitos/citología , Encéfalo/citología , Encéfalo/patología , Diferenciación Celular , Movimiento Celular , Humanos , Ventrículos Laterales , Neuronas/citología , Oligodendroglía/citología , Ratas , Ratas Sprague-Dawley
6.
CNS Neurosci Ther ; 30(2): e14594, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332538

RESUMEN

BACKGROUND: With the rapidly increasing prevalence of metabolic diseases such as type 2 diabetes mellitus (T2DM), neuronal complications associated with these diseases have resulted in significant burdens on healthcare systems. Meanwhile, effective therapies have remained insufficient. A novel fatty acid called S-9-PAHSA has been reported to provide metabolic benefits in T2DM by regulating glucose metabolism. However, whether S-9-PAHSA has a neuroprotective effect in mouse models of T2DM remains unclear. METHODS: This in vivo study in mice fed a high-fat diet (HFD) for 5 months used fasting blood glucose, glucose tolerance, and insulin tolerance tests to examine the effect of S-9-PAHSA on glucose metabolism. The Morris water maze test was also used to assess the impact of S-9-PAHSA on cognition in the mice, while the neuroprotective effect of S-9-PAHSA was evaluated by measuring the expression of proteins related to apoptosis and oxidative stress. In addition, an in vitro study in PC12 cells assessed apoptosis, oxidative stress, and mitochondrial membrane potential with or without CAIII knockdown to determine the role of CAIII in the neuroprotective effect of S-9-PAHSA. RESULTS: S-9-PAHSA reduced fasting blood glucose levels significantly, increased insulin sensitivity in the HFD mice and also suppressed apoptosis and oxidative stress in the cortex of the mice and PC12 cells in a diabetic setting. By suppressing oxidative stress and apoptosis, S-9-PAHSA protected both neuronal cells and microvascular endothelial cells in in vivo and in vitro diabetic environments. Interestingly, this protective effect of S-9-PAHSA was reduced significantly when CAIII was knocked down in the PC12 cells, suggesting that CAIII has a major role in the neuroprotective effect of S-9-PAHSA. However, overexpression of CAIII did not significantly enhance the protective effect of S-9-PAHSA. CONCLUSION: S-9-PAHSA mediated by CAIII has the potential to exert a neuroprotective effect by suppressing apoptosis and oxidative stress in neuronal cells exposed to diabetic conditions. Furthermore, S-9-PAHSA has the capability to reduce fasting blood glucose and LDL levels and enhance insulin sensitivity in mice fed with HFD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Fármacos Neuroprotectores , Ácido Palmítico , Ácidos Esteáricos , Animales , Ratones , Ratas , Apoptosis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Anhidrasa Carbónica III/efectos de los fármacos , Anhidrasa Carbónica III/metabolismo
7.
Opt Lett ; 38(8): 1209-11, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595433

RESUMEN

We demonstrate an ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper (OMT) in a capillary. The OMT is highly sensitive to ambient refractive index (RI) with a maximum sensitivity of 18989 nm/RI unit in the range of 1.3955-1.4008. The thermo-optic effect of isopropanol and the thermal expansions of the sealant and sealed liquid turn the OMT into an ultrasensitive temperature sensor with the maximum sensitivity of -3.88 nm/°C in the range of 20°C-50°C. The temperature sensitivity contributions from different mechanisms are also investigated theoretically and experimentally.

8.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512647

RESUMEN

Herein, we successfully fabricated an Al-doped α-Ga2O3 nanorod array on FTO using the hydrothermal and post-annealing processes. To the best of our knowledge, it is the first time that an Al-doped α-Ga2O3 nanorod array on FTO has been realized via a much simpler and cheaper way than that based on metal-organic chemical vapor deposition, magnetron sputtering, molecular beam epitaxy, and pulsed laser deposition. And, a self-powered Al-doped α-Ga2O3 nanorod array/FTO photodetector was also realized as a photoanode at 0 V (vs. Ag/AgCl) in a photoelectrochemical (PEC) cell, showing a peak responsivity of 1.46 mA/W at 260 nm. The response speed of the Al-doped device was 0.421 s for rise time, and 0.139 s for decay time under solar-blind UV (260 nm) illumination. Compared with the undoped device, the responsivity of the Al-doped device was ~5.84 times larger, and the response speed was relatively faster. When increasing the biases from 0 V to 1 V, the responsivity, quantum efficiency, and detectivity of the Al-doped device were enhanced from 1.46 mA/W to 2.02 mA/W, from ~0.7% to ~0.96%, and from ~6 × 109 Jones to ~1 × 1010 Jones, respectively, due to the enlarged depletion region. Therefore, Al doping may provide a route to enhance the self-powered photodetection performance of α-Ga2O3 nanorod arrays.

9.
Langmuir ; 28(23): 8814-21, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22594626

RESUMEN

We present novel nanoporous TiO(2)/polyion thin-film-coated long-period fiber grating (LPFG) sensors for the direct measurement of low-molecular-weight chemicals by monitoring the resonance wavelength shift. The hybrid overlay films are prepared by a simple layer-by-layer deposition approach, which is mainly based on the electrostatic interaction of TiO(2) nanoparticles and polyions. By the alternate immersion of LPFG into dispersions of TiO(2) nanoparticles and polyions, respectively, the so-formed TiO(2)/polyion thin film exhibits a unique nanoporous internal structure and has a relative higher refractive index than LPFG cladding. In particular, the porosity of the thin film reduces the diffusion coefficient and enhances the permeability retention of low-molecular-weight analytes within the porous film. The increases in the refractive index of the LPFG overlay results in a distinguished modulation of the resonance wavelength. Therefore, the detection sensitivity of LPFG sensors has been greatly improved, according to theoretical simulation. After the structure of the TiO(2)/polyion thin film was optimized, glucose solutions as an example with a low concentration of 10(-7) M was easily detected and monitored at room temperature.


Asunto(s)
Glucosa/análisis , Nanoestructuras/química , Titanio/química , Peso Molecular , Porosidad , Refractometría , Soluciones , Electricidad Estática , Resonancia por Plasmón de Superficie , Agua
10.
Front Neurol ; 13: 869220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645950

RESUMEN

Diabetes is one of the well-established risk factors of stroke and is associated with a poor outcome in patients with stroke. Previous studies have shown that the expression of neuron restrictive silencer factor (NRSF) is elevated in diabetes as well as ischemic stroke. However, the role of NRSF in regulating an outcome of diabetic ischemic stroke has not been completely understood. Here, we hypothesized that diabetes-induced NRSF elevation can aggravate brain injury and cognition impairment in ischemic stroke. The diabetic ischemic stroke mice model was established by 8 weeks of high-fat-diet feeding and 5 days of streptozotocin injection followed by 30 min of middle cerebral artery occlusion (MCAO). We found that diabetes enhanced the MCAO-induced elevation of NRSF in the hippocampus in accompany with an elevation of its corepressors, HDAC1, and mSin3A, and decrease of ß-TrCP. By using histological/immunofluorescence staining and neurobehavioral testing, our results showed that the brain damage and learning/memory impairment were aggravated in diabetic ischemic mice but significantly attenuated after stereotaxic injection of NRSF-shRNA. Meanwhile, by performing whole-brain clearing with PEGASOS, microvascular reconstruction, western blotting, and ELISA, we found that NRSF-shRNA markedly alleviated the vasculature disorders and rescued the suppression of NRP-1, VEGF, and VEGFR2 in the hippocampus of diabetic ischemic mice. Therefore, our results demonstrated for the first time that the elevation of hippocampal NRSF plays an important role in alleviating brain injury and cognitive disabilities in diabetic ischemic mice, potentially via the reduction of NRP-1/VEGF signaling.

11.
Mol Brain ; 15(1): 61, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850767

RESUMEN

Cell senescence is a basic aging mechanism. Previous studies have found that the cellular senescence in adipose tissue and other tissues, such as the pancreas, muscle and liver, is associated with the pathogenesis and progression of type 2 diabetes; however, strong evidence of whether diabetes directly causes neuronal senescence in the brain is still lacking. In this study, we constructed a high glucose and palmitic acid (HGP) environment on PC12 neuronal cells and primary mouse cortical neurons to simulate diabetes. Our results showed that after HGP exposure, neurons exhibited obvious senescence-like phenotypes, including increased NRSF/REST level, mTOR activation and cell autophagy suppression. Downregulation of NRSF/REST could remarkably alleviate p16, p21 and γH2A.X upregulations induced by HGP treatment, and enhance mTOR-autophagy of neurons. Our results suggested that the diabetic condition could directly induce neuronal senescence, which is mediated by the upregulation of NRSF/REST and subsequent reduction of mTOR-autophagy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas de la Membrana/metabolismo , Ácido Palmítico , Proteínas Represoras/metabolismo , Animales , Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Glucosa/metabolismo , Glucosa/farmacología , Ratones , Neuronas/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Serina-Treonina Quinasas TOR/metabolismo
12.
Foods ; 10(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34359488

RESUMEN

In order to make HPI have a wide application prospect in the food industry, we used EGCG to modify HPI. In this study, we prepared different concentrations (1, 2, 3, 4, and 5 mM) of (-)-epigallocatechin gallate (EGCG) covalently linked to HPI and use methods such as particle size analysis, circular dichroism (CD), and three-dimensional fluorescence spectroscopy to study the changes in the structure and functional properties of HPI after being covalently combined with EGCG. The particle size data indicated that the covalent HPI-EGCG complex was larger than native HPI, and the particle size was mainly distributed at about 200 µm. CD and three-dimensional fluorescence spectroscopy analyses showed that the conformation of the protein was changed by conjugation with EGCG. The ß-sheet content decreased from 82.79% to 66.67% after EGCG bound to the protein, and the hydrophobic groups inside the protein were exposed, which increased the hydrophobicity of the protein and changed its conformation. After HPI and 1 mM of EGCG were covalently bonded, the solubility and emulsifying properties of the covalent complex were improved compared with native HPI. These results indicated that HPI-EGCG conjugates can be added in some foods.

13.
Front Pharmacol ; 12: 754387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867366

RESUMEN

Atherosclerotic cardiovascular disease is a common and severe complication of diabetes. There is a large need to identify the effective and safety strategies on diabetic cardiovascular disease (DCVD). 9-PAHSA is a novel endogenous fatty acid, and has been reported to reduce blood glucose levels and attenuate inflammation. We aim to evaluate the effects of 9-PAHSA on DCVD and investigate the possible mechanisms underlying it. Firstly, serum 9-PAHSA levels in human were detected by HPLC-MS/MS analysis. Then 9-PAHSA was synthesized and purified. The synthesized 9-PAHSA was gavaged to db/db mice with 50 mg/kg for 4 weeks. The carotid arterial plaque and cardiac structure was assessed by ultrasound. Cardiac autophagy was tested by western blot analysis, electron microscope and iTRAQ. The results showed that 9-PAHSA, in patients with type 2 diabetes mellitus (T2DM), was significantly lower than that in non-diabetic subjects. Administration of 9-PAHSA for 2 weeks reduced blood glucose levels. Ultrasound observed that continue administration of 9-PAHSA for 4 weeks ameliorated carotid vascular calcification, and attenuated myocardial hypertrophy and dysfunction in db/db mice. Electron microscopy showed continue 9-PAHSA treatment significantly increased autolysosomes, while dramatically decreased greases in the myocardial cells of the db/db mice. Moreover, iTRAQ analysis exhibited that continue 9-PAHSA treatment upregulated BAG3 and HSPB8. Furthermore, western blot analysis confirmed that 9-PAHSA down-regulated Akt/mTOR and activated PI3KIII/BECN1 complex in diabetic myocardium. Thus, 9-PAHSA benefits DCVD in diabetic mice by ameliorating carotid vascular calcification, promoting autophagic flux and reducing myocardial hypertrophy.

15.
CNS Neurosci Ther ; 27(4): 484-496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33459523

RESUMEN

AIMS: Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5-PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic-related neurodegeneration. The aim of the present study was to investigate whether 5-PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy. METHODS: 5-PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5-PAHSA for 24 h, while mice were administered with 5-PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors. RESULTS: Although there was no significant improvement in glucose metabolism in mice administered with 5-PAHSA, ox-LDL decreased significantly following the administration of 5-PAHSA in serum of DB/DB mice (p < 0.0001). We also found that the phosphorylation of m-TOR and ULK-1 was suppressed in both PC12 cells and DB/DB mice following the administration of 5-PAHSA (p < 0.05 and p < 0.01), although increased levels of autophagy were only observed in vitro (p < 0.05). Following the administration of 5-PAHSA, the concentration of ROS decreased in PC12 cells and the levels of CRP increased in high-dose group of 5-PAHSA (p < 0.01). There were no significant changes in terms of apoptosis, other inflammatory factors, or cognition in DB/DB mice following the administration of 5-PAHSA. CONCLUSION: We found that 5-PAHSA can enhance autophagy in PC12 cells under diabetic conditions. Our data demonstrated that 5-PAHSA inhibits phosphorylation of the m-TOR-ULK1 pathway and suppressed oxidative stress in PC12 cells, and exerted influence on lipid metabolism in DB/DB mice.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Palmítico/farmacología , Ácidos Esteáricos/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Células PC12 , Ácido Palmítico/uso terapéutico , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ácidos Esteáricos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
16.
Biochem Biophys Res Commun ; 390(4): 1294-8, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19878659

RESUMEN

Huntington's disease (HD) and other polyglutamine (polyQ) neurodegenerative diseases are characterized by neuronal accumulation of the disease protein, suggesting that the cellular ability to handle abnormal proteins is compromised. As a multi-subunit protein localized in the mitochondria of eukaryotic cells, the F(0)F(1)-ATP synthase alpha belongs to the family of stress proteins HSP60. Currently, mounting evidences indicate F(0)F(1)-ATP synthase alpha may play a role in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Recently, ATP synthase alpha was reported to have protective and therapeutic roles in primary cardiacmyocytes of iron-overloaded rats by lowering ROS production. However, little is understood about the role of ATP synthase alpha in cell death and neurodegeneration. Here, we demonstrate that overexpression of ATP synthase alpha suppresses huntingtin (htt) polyQ aggregation and toxicity in transfected SH-SY5Y cell lines. Overexpression of ATP synthase alpha is able to protect cell death caused by polyglutamine-expanded htt. Transient overexpression of ATP synthase alpha suppresses the aggregate formation by estimation of polyQ aggregation, Western blot analysis, and filter trap assay (FTA) in transfected SH-SY5Y cells. These results indicated that ATP synthase alpha has a strong inhibitory effect on polyglutamine aggregate formation and toxicity in vitro, and suggest a novel neuroprotective role of ATP synthase alpha.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , ATPasas de Translocación de Protón/biosíntesis , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Proteína Huntingtina , Ratones , Péptidos/farmacología , Ratas
17.
Sheng Li Xue Bao ; 60(4): 475-84, 2008 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-18690389

RESUMEN

This work was performed to determine the role of delta-opioid receptor (DOR) in protection against acute ischemia/reperfusion injury. Transient (1 h) focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (30 nmol, 60 nmol, 200 nmol), DOR antagonist naltrindole (20 nmol, 50 nmol, 100 nmol) or artificial cerebral spinal fluid (aCSF) was injected respectively into the lateral cerebroventricle of the rat 30 min before the induction of brain ischemia. Neurological deficits were assessed by the five-grade system (Longa's methods). The brain infarct was measured by cresyl violet (CV) staining and infarct volume was analyzed by an image processing and analysis system. The expression of DOR was detected by Western blot. The results showed that 60 nmol TAN-67 significantly reduced the infarct volume (P<0.05), attenuated neurological deficits (P<0.05) and tended to increase the expression of about 60 kDa DOR protein (P>0.05), while 100 nmol naltrindole aggravated ischemic damage and decreased about 60 kDa DOR protein expression (P<0.05). These results suggest that DOR activation protects the brain against acute ischemia/reperfusion injury in rat.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Naltrexona/análogos & derivados , Quinolinas/farmacología , Receptores Opioides delta/agonistas , Animales , Encéfalo/patología , Infarto de la Arteria Cerebral Media , Inyecciones Intraventriculares , Naltrexona/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión
18.
Zhong Xi Yi Jie He Xue Bao ; 6(6): 632-8, 2008 Jun.
Artículo en Zh | MEDLINE | ID: mdl-18559244

RESUMEN

OBJECTIVE: To explore the effect of delta-opioid receptor (DOR) in electroacupuncture (EA) protecting the brain against acute ischemic injury. METHODS: Fifty-one rats were randomly divided into sham ischemia group, ischemia group, sham EA group, EA group, and EA+DOR antagonist (naltrindole) group. Transient focal cerebral ischemia (1 hour) was induced in rat brain by middle cerebral artery occlusion (MCAO) method. EA was applied on Shuigou (GV 26) and Neiguan (PC 6) for 30 min, starting immediately after the onset of reperfusion. Neurological deficit scores and volume of cerebral infarction were detected after 24-hour reperfusion. Other 12 rats were randomly divided into sham ischemia group, ischemia group, EA group and EA + naltrindole group. DOR protein expressions were assessed by Western blotting after 24-hour reperfusion. RESULTS: In comparison with the ischemia group and sham EA group, EA significantly reduced ischemic infarction and neurological deficits (P<0.05); EA significantly increased the expression of 60 kD DOR protein (P<0.05) and tended to increase that of 36 kD DOR protein (P>0.05). When naltrindole was combined with EA, the naltrindole completely abolished the EA-induced protection in ischemic infarction and neurological deficits, and also arrested the expression of DOR. CONCLUSION: EA can up-regulate DOR expression and protect the brain from ischemia-reperfusion injury.


Asunto(s)
Electroacupuntura , Infarto de la Arteria Cerebral Media/terapia , Receptores Opioides delta/metabolismo , Daño por Reperfusión/prevención & control , Animales , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
19.
Neuroreport ; 18(15): 1543-6, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17885598

RESUMEN

The interrelationship between alpha-synuclein (alpha-syn) and mitochondria is not clearly understood. Owing to the lack of the signal peptide and its predominant localization in the cytosol, alpha-syn is generally considered to affect mitochondrial function through some secondary effects. Contrary to this assumption, here, we show that a portion of alpha-syn is present in the membrane of mitochondria in normal dopaminergic neurons. The same profile is also found in other alpha-syn-positive neurons. Thus, binding to the membrane of mitochondria is the physiological nature of alpha-syn and might also contribute to the pathological role of this protein in the mitochondrial dysfunction in Parkinson's disease.


Asunto(s)
Mesencéfalo/metabolismo , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo , Animales , Western Blotting , Dopamina/fisiología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Mesencéfalo/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Fracciones Subcelulares/fisiología
20.
CNS Neurosci Ther ; 23(6): 462-474, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28374506

RESUMEN

AIMS: Although cognitive dysfunction is a common neurological complication in elderly patients with diabetes, the mechanisms underlying this relationship remain unclear, and effective preventive interventions have yet to be developed. Thus, this study investigated the preventive effects and mechanisms of action associated with granulocyte colony-stimulating factor (G-CSF) on cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease. METHODS: This study included 40 male db/db diabetic and wild-type (WT) mice that were categorized into the following four groups at the age of 3 weeks: db/db group (DG), db/db+G-CSF group (DGG), WT group (WG), and WT+G-CSF group (WGG). The mice were fed normal diets for 4 months and then given G-CSF (75 µg/kg) via intraperitoneal injections for 1 month. At 7.5 months of age, the cognitive abilities of the mice were assessed with the Y-maze test and the Social Choice Test; body weight, blood pressure (BP), and blood glucose measurements were obtained throughout the study. Brain imaging and blood oxygen level-dependent (BOLD) contrast imaging analyses were performed with a small animal magnetic resonance imaging (MRI) system, autophagosome levels were detected with a transmission electron microscope (TEM), hippocampal neurons were assessed with hematoxylin and eosin (HE) staining, and protein expressions and distributions were evaluated using immunohistochemistry and Western blot analyses. RESULTS: (i) The body weight and blood glucose levels of the DG and DGG mice were significantly higher than those of the WG and WGG mice; (ii) social choice and spatial memory capabilities were significantly reduced in DG mice but were recovered by G-CSF in DGG mice; (iii) the MRI scans revealed multiple lacunar lesions and apparent hippocampal atrophy in the brains of DG mice, but G-CSF reduced the number of lacunar lesions and ameliorated hippocampal atrophy; (iv) the MRI-BOLD scans showed a downward trend in whole-brain activity and reductions in the connectivities of the hippocampus and amygdala with subcortical structures in DG mice, but G-CSF clearly improved the altered brain activity as well as the connectivity of the hippocampus in DGG mice; (v) HE staining revealed fewer neurons in the hippocampus in DG mice; (vi) TEM analyses revealed significantly fewer autophagosomes in the hippocampi of DG mice, but G-CSF did not increase these numbers; (vii) there were significant reductions in mechanistic target of rapamycin (mTOR) and LC3-phosphatidylethanolamine conjugate (LC3)-II/I levels in the hippocampi of DG mice, whereas p62 was upregulated, and G-CSF significantly enhanced the levels of Beclin1, mTOR, and LC-II/I in DGG mice; and (viii) G-CSF significantly reversed increases in nuclear factor κB (NF-κB) protein levels in DG but not in WG mice. CONCLUSIONS: In this study, aged diabetic mice were prone to cognitive dysfunction and cerebral small vessel disease. However, administration of G-CSF significantly improved cognitive function in elderly db/db diabetic mice, and this change was likely related to the regulation of autophagy and NF-κB signaling pathways.


Asunto(s)
Envejecimiento , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/prevención & control , Diabetes Mellitus Experimental/complicaciones , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Animales , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Enfermedades de los Pequeños Vasos Cerebrales/sangre , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Conducta de Elección , Trastornos del Conocimiento/sangre , Trastornos del Conocimiento/diagnóstico por imagen , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Oxígeno/sangre , Ratas , Conducta Social , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA