Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401777, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747025

RESUMEN

Bismuth-based electrocatalysts are effective for carbon dioxide (CO2) reduction to formate. However, at room temperature, these materials are only available in solid state, which inevitably suffers from surface deactivation, declining current densities, and Faradaic efficiencies. Here, the formation of a liquid bismuth catalyst on the liquid gallium surface at ambient conditions is shown as its exceptional performance in the electrochemical reduction of CO2 (i.e., CO2RR). By doping a trace amount of bismuth (740 ppm atomic) in gallium liquid metal, a surface enrichment of bismuth by over 400 times (30 at%) in liquid state is obtained without atomic aggregation, achieving 98% Faradic efficiency for CO2 conversion to formate over 80 h. Ab initio molecular simulations and density functional theory calculations reveal that bismuth atoms in the liquid state are the most energetically favorable sites for the CO2RR intermediates, superior to solid Bi-sites, as well as joint GaBi-sites. This study opens an avenue for fabricating high-performing liquid-state metallic catalysts that cannot be reached by elementary metals under electrocatalytic conditions.

2.
ACS Appl Mater Interfaces ; 14(11): 13904-13913, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35276036

RESUMEN

Active regulation of pore accessibility in microporous materials by external stimuli has aroused great attention in recent years. Here, we show the first experimental proof that guest adsorption in a dielectric microporous material can be regulated by a moderate external E-field below the gas breakdown voltage. CO2 adsorption capacity in MIL-53 (Al) was significantly reduced, whereas that of NH2-MIL-53 (Al) changed insignificantly under a direct current E-field gradient of 286 V/mm. Ab initio DFT calculations revealed that the E-field decreased the charge transfer between the CO2 molecule and the adsorption site in the MIL-53 framework, which resulted in reduced binding energy and consequently lowered CO2 adsorption capacity. This effect was only observed in the narrow pore state MIL-53 (Al) but not in its large pore configuration. Our results demonstrate the feasibility of regulating the adsorption of gas molecules in microporous materials using moderate E-fields.

3.
Nat Commun ; 13(1): 5046, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068193

RESUMEN

Green hydrogen produced by water splitting using renewable energy is the most promising energy carrier of the low-carbon economy. However, the geographic mismatch between renewables distribution and freshwater availability poses a significant challenge to its production. Here, we demonstrate a method of direct hydrogen production from the air, namely, in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and electrolysis powered by solar or wind with a current density up to 574 mA cm-2. A prototype of such has been established and operated for 12 consecutive days with a stable performance at a Faradaic efficiency around 95%. This so-called direct air electrolysis (DAE) module can work under a bone-dry environment with a relative humidity of 4%, overcoming water supply issues and producing green hydrogen sustainably with minimal impact to the environment. The DAE modules can be easily scaled to provide hydrogen to remote, (semi-) arid, and scattered areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA