Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Comput Chem ; 41(2): 147-155, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31603259

RESUMEN

To assess the chemical reactivity, toxicity, and mobility of pollutants in the environment, knowledge of their species distributions is critical. Because their direct measurement is often infeasible, speciation modeling is widely adopted. Mercury (Hg) is a representative pollutant for which study of its speciation benefits from modeling. However, Hg speciation modeling is often hindered by a lack of reliable thermodynamic constants. Although computational chemistry (e.g., density functional theory [DFT]) can generate these constants, methods for directly coupling DFT and speciation modeling are not available. Here, we combine computational chemistry and continuum-scale modeling with curated online databases to ameliorate the problem of unreliable inputs to Hg speciation modeling. Our AQUA-MER databases and web server (https://aquamer.ornl.gov) provides direct speciation results by combining web-based interfaces to a speciation calculator, databases of thermodynamic constants, and a computational chemistry toolkit to estimate missing constants. Although Hg is presented as a concrete use case, AQUA-MER can also be readily applied to other elements. © 2019 Wiley Periodicals, Inc.

2.
Environ Sci Technol ; 48(1): 542-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24289499

RESUMEN

Ureolytically driven calcite precipitation is a promising approach for inducing subsurface mineral precipitation, but engineered application requires the ability to control and predict precipitate distribution. To study the coupling between reactant transport and precipitate distribution, columns with defined zones of immobilized urease were used to examine the distribution of calcium carbonate precipitation along the flow path, at two different initial flow rates. As expected, with slower flow precipitate was concentrated toward the upstream end of the enzyme zone and with higher flow the solid was more uniformly distributed over the enzyme zone. Under constant hydraulic head conditions the flow rate decreased as precipitates decreased porosity and permeability. The hydrolysis/precipitation zone was expected to become compressed in the upstream direction. However, apparent reductions in the urea hydrolysis rate and changes in the distribution of enzyme activity, possibly due to CaCO3 precipitate hindering urea transport to the enzyme, or enzyme mobilization, mitigated reaction zone compression. Co-injected strontium was expected to be sequestered by coprecipitation with CaCO3, but the results suggested that coprecipitation was not an effective sequestration mechanism in this system. In addition, spectral induced polarization (SIP) was used to monitor the spatial and temporal evolution of the reaction zone.


Asunto(s)
Carbonato de Calcio/química , Precipitación Química , Estroncio/aislamiento & purificación , Fenómenos Químicos , Restauración y Remediación Ambiental , Hidrólisis , Permeabilidad , Porosidad , Propiedades de Superficie , Urea/química , Ureasa/química
3.
J Contam Hydrol ; 108(3-4): 77-88, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19683833

RESUMEN

It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.


Asunto(s)
Porosidad , Movimientos del Agua , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA