RESUMEN
Nowadays, resorcinol (RC) has been widely applied in the chemical and pharmaceutical industries. However, the electrochemical detection technique of RC still features some significant drawbacks, for instance, a low sensitivity. Hence, in the present work, a glass carbon electrode was developed for the electrochemical detection of RC with good specificity and stability, through modifying the glass carbon electrode (GCE) by polyphenol oxidase (PPO), an NH2-SBA-15 mesoporous material (NH2-SBA-15), L-tyrosine (L-Tyr) and gold nano-particles (AuNPs). After being successively modified by AuNPs, L-Tyr, NH2-SBA-15 and PPO, the constructed PPO/NH2-SBA-15/L-Tyr/AuNPs/GCE was used to discriminate RC from ions and other common micromolecules, which showed a fairly good specificity and stability. The proposed electrochemical detection method features a linear range of from 0.5 to 21.0 µM with a LOD down to 0.15 µM, revealing a better sensitivity than the existing methods. It is worth mentioning that the proposed PPO/NH2-SBA-15/L-Tyr/AuNPs/GCE has been successfully used as an electrochemical probe for the RC assay in domestic sewage.
Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Catecol Oxidasa , Técnicas Electroquímicas , Electrodos , Oro , Resorcinoles , TirosinaRESUMEN
In the communication, by virtue of the excellent conductivity and great surface area of mesoporous carbon (FDU-15), the enhanced conductivity of Au NPs, and the good electrochemical response of polyphenol oxidase (PPO) to rutin, a PPO/AuNPs/FDU-15-modified electrode was used as a candidate for the determination of rutin in dark teas with satisfactory results.