Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Small ; 20(5): e2306646, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759391

RESUMEN

Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.

2.
Adv Funct Mater ; 30(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-32038121

RESUMEN

Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.

3.
Adv Funct Mater ; 28(39)2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32595422

RESUMEN

A bioengineered spinal cord is fabricated via extrusion-based multi-material 3D bioprinting, in which clusters of induced pluripotent stem cell (iPSC)-derived spinal neuronal progenitor cells (sNPCs) and oligodendrocyte progenitor cells (OPCs) are placed in precise positions within 3D printed biocompatible scaffolds during assembly. The location of a cluster of cells, of a single type or multiple types, is controlled using a point-dispensing printing method with a 200 µm center-to-center spacing within 150 µm wide channels. The bioprinted sNPCs differentiate and extend axons throughout microscale scaffold channels, and the activity of these neuronal networks is confirmed by physiological spontaneous calcium flux studies. Successful bioprinting of OPCs in combination with sNPCs demonstrates a multicellular neural tissue engineering approach, where the ability to direct the patterning and combination of transplanted neuronal and glial cells can be beneficial in rebuilding functional axonal connections across areas of central nervous system (CNS) tissue damage. This platform can be used to prepare novel biomimetic, hydrogel-based scaffolds modeling complex CNS tissue architecture in vitro and harnessed to develop new clinical approaches to treat neurological diseases, including spinal cord injury.

4.
Nano Lett ; 17(12): 7207-7212, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29120648

RESUMEN

Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log10 to 6 log10 for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.


Asunto(s)
Oro/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , Anticuerpos/inmunología , Proteína C-Reactiva/análisis , Proteína C-Reactiva/inmunología , Difusión , Humanos , Inflamación/diagnóstico , Cinética , Límite de Detección , Tamaño de la Partícula , Pruebas en el Punto de Atención , Temperatura
5.
Langmuir ; 30(4): 1142-50, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24410099

RESUMEN

Solvent-cast printing is a highly versatile microfabrication technique that can be used to construct various geometries such as filaments, towers, scaffolds, and freeform circular spirals by the robotic deposition of a polymer solution ink onto a moving stage. In this work, we have performed a comprehensive characterization of the solvent-cast printing process using polylactide (PLA) solutions by analyzing the flow behavior of the solutions, the solvent evaporation kinetics, and the effect of process-related parameters on the crystallization of the extruded filaments. Rotational rheometry at low to moderate shear rates showed a nearly Newtonian behavior of the PLA solutions, while capillary flow analysis based on process-related data indicated shear thinning at high shear rates. Solvent vaporization tests suggested that the internal diffusion of the solvent through the filaments controlled the solvent removal of the extrudates. Different kinds of three-dimensional (3D) structures including a layer-by-layer tower, nine-layer scaffold, and freeform spiral were fabricated, and a processing map was given to show the proper ranges of process-related parameters (i.e., polymer content, applied pressure, nozzle diameter, and robot velocity) for the different geometries. The results of differential scanning calorimetry revealed that slow solvent evaporation could increase the ability of PLA to complete its crystallization process during the filament drying stage. The method developed here offers a new perspective for manufacturing complex structures from polymer solutions and provides guidelines to optimize the various parameters for 3D geometry fabrication.


Asunto(s)
Microtecnología/instrumentación , Poliésteres/química , Impresión/instrumentación , Solventes/química , Cristalización , Tinta , Propiedades de Superficie , Volatilización
6.
ACS Appl Mater Interfaces ; 16(10): 12897-12906, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412379

RESUMEN

The "von Neumann bottleneck" is a formidable challenge in conventional computing, driving exploration into artificial synapses. Organic semiconductor materials show promise but are hindered by issues such as poor adhesion and a high elastic modulus. Here, we combine polyisoindigo-bithiophene (PIID-2T) with grafted poly(dimethylsiloxane) (PDMS) to synthesize the triblock-conjugated polymer (PIID-2T-PDMS). The polymer exhibited substantial enhancements in adhesion (4.8-68.8 nN) and reductions in elastic modulus (1.6-0.58 GPa) while maintaining the electrical characteristics of PIID-2T. The three-terminal organic synaptic transistor (three-terminal p-type organic artificial synapse (TPOAS)), constructed using PIID-2T-PDMS, exhibits an unprecedented analog switching range of 276×, surpassing previous records, and a remarkable memory on-off ratio of 106. Moreover, the device displays outstanding operational stability, retaining 99.6% of its original current after 1600 write-read events in the air. Notably, TPOAS replicates key biological synaptic behaviors, including paired-pulse facilitation (PPF), short-term plasticity (STP), and long-term plasticity (LTP). Simulations using handwritten digital data sets reveal an impressive recognition accuracy of 91.7%. This study presents a polyisoindigo-bithiophene-based block copolymer that offers enhanced adhesion, reduced elastic modulus, and high-performance artificial synapses, paving the way for the next generation of neuromorphic computing systems.

7.
Small ; 9(24): 4118-22, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23824963

RESUMEN

The solvent-cast direct-write fabrication of microstructures is shown using a thermoplastic polymer solution ink. The method employs the robotically controlled microextrusion of a filament combined with a rapid solvent evaporation. Upon drying, the increased rigidity of the extruded filament enables the creation of complex freeform 3D shapes.


Asunto(s)
Materiales Biocompatibles/química , Solventes/química , Elasticidad , Tinta , Microscopía Electrónica de Rastreo , Estructura Molecular , Nanocompuestos/química , Poliésteres/química , Polímeros/química , Presión , Impresión , Soluciones , Viscosidad
8.
ACS Appl Mater Interfaces ; 15(35): 41656-41665, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37610705

RESUMEN

Organic electrochemical transistors (OECTs) for skin-like bioelectronics require mechanical stretchability, softness, and cost-effective large-scale manufacturing. However, developing intrinsically stretchable OECTs using a simple and fast-response technique is challenging due to limitations in functional materials, substrate wettability, and integrated processing of multiple materials. In this regard, we propose a fabrication method devised by combining the preparation of a microstructured hydrophilic substrate, multi-material printing of functional inks with varying viscosities, and optimization of the device channel geometries. The resulting intrinsically stretchable OECT array with synaptic properties was successfully manufactured. These devices demonstrated high transconductance (22.5 mS), excellent mechanical softness (Young's modulus ∼ 2.2 MPa), and stretchability (∼30%). Notably, the device also exhibited artificial synapse functionality, mimicking the biological synapse with features such as paired-pulse depression, short-term plasticity, and long-term plasticity. This study showcases a promising strategy for fabricating intrinsically stretchable OECTs and provides valuable insights for the development of brain-computer interfaces.

9.
Adv Sci (Weinh) ; 8(11): 2004605, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34141523

RESUMEN

Droplet vitrification has emerged as a promising ice-free cryopreservation approach to provide a supply chain for off-the-shelf cell products in cell therapy and regenerative medicine applications. Translation of this approach requires the use of low concentration (i.e., low toxicity) permeable cryoprotectant agents (CPA) and high post cryopreservation viability (>90%), thereby demanding fast cooling and warming rates. Unfortunately, with traditional approaches using convective heat transfer, the droplet volumes that can be successfully vitrified and rewarmed are impractically small (i.e., 180 picoliter) for <2.5 m permeable CPA. Herein, a novel approach to achieve 90-95% viability in micro-liter size droplets with 2 m permeable CPA, is presented. Droplets with plasmonic gold nanorods (GNRs) are printed onto a cryogenic copper substrate for improved cooling rates via conduction, while plasmonic laser heating yields >400-fold improvement in warming rates over traditional convective approach. High viability cryopreservation is then demonstrated in a model cell line (human dermal fibroblasts) and an important regenerative medicine cell line (human umbilical cord blood stem cells). This approach opens a new paradigm for cryopreservation and rewarming of dramatically larger volume droplets at lower CPA concentration for cell therapy and other regenerative medicine applications.


Asunto(s)
Criopreservación/métodos , Nanotubos/química , Vitrificación , Línea Celular , Supervivencia Celular , Células Cultivadas , Frío , Fibroblastos/química , Oro/química , Calor , Humanos
10.
Adv Mater ; 30(23): e1707495, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29691902

RESUMEN

Conventional 3D printing technologies typically rely on open-loop, calibrate-then-print operation procedures. An alternative approach is adaptive 3D printing, which is a closed-loop method that combines real-time feedback control and direct ink writing of functional materials in order to fabricate devices on moving freeform surfaces. Here, it is demonstrated that the changes of states in the 3D printing workspace in terms of the geometries and motions of target surfaces can be perceived by an integrated robotic system aided by computer vision. A hybrid fabrication procedure combining 3D printing of electrical connects with automatic pick-and-placing of surface-mounted electronic components yields functional electronic devices on a free-moving human hand. Using this same approach, cell-laden hydrogels are also printed on live mice, creating a model for future studies of wound-healing diseases. This adaptive 3D printing method may lead to new forms of smart manufacturing technologies for directly printed wearable devices on the body and for advanced medical treatments.


Asunto(s)
Impresión Tridimensional , Animales , Humanos , Hidrogeles , Ratones
11.
Adv Mater ; : e1803980, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30151842

RESUMEN

Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light-emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer-based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one-pot custom built 3D-printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light-emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D-printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next-generation wearable and 3D-structured optoelectronics, and validating the potential of 3D printing to achieve high-performance integrated active electronic materials and devices.

12.
Adv Mater Technol ; 3(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29608202

RESUMEN

The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.

13.
Adv Mater ; 29(27)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28474793

RESUMEN

The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human-machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications.


Asunto(s)
Impresión Tridimensional , Monitoreo Fisiológico
14.
Nanoscale ; 7(15): 6451-6, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25793923

RESUMEN

A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA