RESUMEN
Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.
Asunto(s)
Diente , Animales , Ratones , Diente Molar , Morfogénesis/genética , Odontogénesis/genética , Raíz del DienteRESUMEN
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;ß-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;ß-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Asunto(s)
Fisura del Paladar , Vía de Señalización Wnt , Ratones , Animales , Vía de Señalización Wnt/fisiología , Hueso Paladar , Fisura del Paladar/genética , Diferenciación Celular , Paladar Blando , Homeostasis , Regulación del Desarrollo de la Expresión GénicaRESUMEN
Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Células Madre Mesenquimatosas/metabolismo , Diente Molar/metabolismo , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Raíz del Diente/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Femenino , Proteínas con Homeodominio LIM/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Diente Molar/citología , Diente Molar/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Raíz del Diente/citología , Raíz del Diente/crecimiento & desarrollo , Factores de Transcripción/metabolismoRESUMEN
Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.
Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Esquizofrenia , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genéticaRESUMEN
Recurrent, de novo, meiotic non-allelic homologous recombination events between low copy repeats, termed LCR22s, leads to the 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome/DiGeorge syndrome). Although most 22q11.2DS patients have a similar sized 3 million base pair (Mb), LCR22A-D deletion, some have nested LCR22A-B or LCR22A-C deletions. Our goal is to identify additional recurrent 22q11.2 deletions associated with 22q11.2DS, serving as recombination hotspots for meiotic chromosomal rearrangements. Here, using data from Affymetrix 6.0 microarrays on 1680 22q11.2DS subjects, we identified what appeared to be a nested proximal 22q11.2 deletion in 38 (2.3%) of them. Using molecular and haplotype analyses from 14 subjects and their parent(s) with available DNA, we found essentially three types of scenarios to explain this observation. In eight subjects, the proximal breakpoints occurred in a small sized 12 kb LCR distal to LCR22A, referred to LCR22A+, resulting in LCR22A+-B or LCR22A+-D deletions. Six of these eight subjects had a nested 22q11.2 deletion that occurred during meiosis in a parent carrying a benign 0.2 Mb duplication of the LCR22A-LCR22A+ region with a breakpoint in LCR22A+. Another six had a typical de novo LCR22A-D deletion on one allele and inherited the LCR22A-A+ duplication from the other parent thus appearing on microarrays to have a nested deletion. LCR22A+ maps to an evolutionary breakpoint between mice and humans and appears to serve as a local hotspot for chromosome rearrangements on 22q11.2.
Asunto(s)
Alelos , Mapeo Cromosómico , Síndrome de DiGeorge/genética , Meiosis , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Femenino , Humanos , MasculinoRESUMEN
The complexity of the root canal system results in areas where mechanical instrumentation is impossible during endodontic treatment. To disinfect these areas, the effect of irrigation on biofilm debridement is of great significance but has not yet been well explored. Using an in vitro Enterococcus faecalis biofilm model and a biofilm reactor, the present study provides a better understanding of the relative contributions of mechanical and chemical effects of irrigation on biofilm removal, as well as the factors influencing their coupling efficiency. The results clearly demonstrate that, the mechanical effect of irrigation alone does not significantly influence the stability of biofilms. However, the mechanical effect promotes biofilm eradication by coupling with the chemical effect. In addition, both the irrigant concentration and the irrigant-biofilm contact time are among the key factors affecting the mechano-chemical coupling. This knowledge may serve to better direct endodontists in designing irrigation regimes during root canal therapy.
Asunto(s)
Biopelículas , Irrigantes del Conducto Radicular , Hipoclorito de Sodio , Desbridamiento , Enterococcus faecalisRESUMEN
The 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome; DiGeorge syndrome) is a congenital anomaly disorder in which haploinsufficiency of TBX1, encoding a T-box transcription factor, is the major candidate for cardiac outflow tract (OFT) malformations. Inactivation of Tbx1 in the anterior heart field (AHF) mesoderm in the mouse results in premature expression of pro-differentiation genes and a persistent truncus arteriosus (PTA) in which septation does not form between the aorta and pulmonary trunk. Canonical Wnt/ß-catenin has major roles in cardiac OFT development that may act upstream of Tbx1. Consistent with an antagonistic relationship, we found the opposite gene expression changes occurred in the AHF in ß-catenin loss of function embryos compared to Tbx1 loss of function embryos, providing an opportunity to test for genetic rescue. When both alleles of Tbx1 and one allele of ß-catenin were inactivated in the Mef2c-AHF-Cre domain, 61% of them (n = 34) showed partial or complete rescue of the PTA defect. Upregulated genes that were oppositely changed in expression in individual mutant embryos were normalized in significantly rescued embryos. Further, ß-catenin was increased in expression when Tbx1 was inactivated, suggesting that there may be a negative feedback loop between canonical Wnt and Tbx1 in the AHF to allow the formation of the OFT. We suggest that alteration of this balance may contribute to variable expressivity in 22q11.2DS.
Asunto(s)
Anomalías Cardiovasculares/genética , Síndrome de DiGeorge/genética , Modelos Animales de Enfermedad , Proteínas de Dominio T Box/genética , beta Catenina/genética , Animales , Apoptosis/genética , Anomalías Cardiovasculares/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/genética , Síndrome de DiGeorge/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Dominio T Box/metabolismo , Tronco Arterial/citología , Tronco Arterial/embriología , Tronco Arterial/metabolismo , beta Catenina/metabolismoRESUMEN
BACKGROUND: Nail-patella syndrome (NPS) is an autosomal dominant developmental disorder most commonly characterized by dyplasia of nail or patella, the radial head or the humeral head hypoplasia, and, frequently ocular abnormalities and renal disease. It is caused by heterozygous loss-of-function mutations in the LMX1B gene, which encodes LIM homeodomain transcription factor and is essential for regulating the dorsal limb fate. METHODS: A five generation pedigree was recruited. Genomic DNA was extracted from the peripheral blood samples. Mutation detection was performed by Sanger sequencing the LMX1B gene. In silico functional annotation of the variant was performed using the in silico predictors SIFT, PolyPhen-2 and Mutation Taster. RESULTS: A novel heterozygous small deletion within exon 4 of LMX1B, c.712_714delTTC, was identified in a rare five-generation NPS pedigree. The mutation resulted in a deletion of the conserved amino acid phenylalanine at codon 238 (p.Phe238del), which located in the homeodomain of LMX1B may abolish DNA binding with the molecule. Conformational prediction showed that the variation could transform the helical structure comprising p.Phe234, p.Lys235, p.Ala236, and p.Ser237. CONCLUSION: We identified a novel NPS-causing LMX1B mutation and expanded the spectrum of mutations in the LMX1B gene. The c.712_714delTTC mutation may affect the quaternary structure of LMX1B, which is essential for the specification of dorsal limb fate at both zeugopodal and autopodal levels, leading to typical NPS.
Asunto(s)
Eliminación de Gen , Proteínas con Homeodominio LIM/genética , Síndrome de la Uña-Rótula/genética , Factores de Transcripción/genética , China , Codón , Exones , Femenino , Heterocigoto , Humanos , Mutación con Pérdida de Función , Masculino , LinajeRESUMEN
We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion.
Asunto(s)
Proteínas de Unión al ADN/genética , Síndrome de DiGeorge/genética , Cardiopatías Congénitas/genética , Histonas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Nucleares/genética , Oxidorreductasas N-Desmetilantes/genética , Factores de Transcripción/genética , Estudios de Casos y Controles , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/patología , Dioxigenasas , Exoma , Regulación de la Expresión Génica , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Demetilasas , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple , Riesgo , Transcripción Genética , Proteínas de Transporte Vesicular/genéticaRESUMEN
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Síndrome de DiGeorge/genética , Transportador de Glucosa de Tipo 3/genética , Cardiopatías Congénitas/genética , Adulto , Aorta Torácica/fisiopatología , Síndrome de DiGeorge/fisiopatología , Femenino , Genotipo , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Polimorfismo de Nucleótido SimpleRESUMEN
The 22q11.2 deletion syndrome is caused by non-allelic homologous recombination events during meiosis between low copy repeats (LCR22) termed A, B, C, and D. Most patients have a typical LCR22A-D (AD) deletion of 3 million base pairs (Mb). In this report, we evaluated IQ scores in 1,478 subjects with 22q11.2DS. The mean of full scale IQ, verbal IQ, and performance IQ scores in our cohort were 72.41 (standard deviation-SD of 13.72), 75.91(SD of 14.46), and 73.01(SD of 13.71), respectively. To investigate whether IQ scores are associated with deletion size, we examined individuals with the 3 Mb, AD (n = 1,353) and nested 1.5 Mb, AB (n = 74) deletions, since they comprised the largest subgroups. We found that full scale IQ was decreased by 6.25 points (p = .002), verbal IQ was decreased by 8.17 points (p = .0002) and performance IQ was decreased by 4.03 points (p = .028) in subjects with the AD versus AB deletion. Thus, individuals with the smaller, 1.5 Mb AB deletion have modestly higher IQ scores than those with the larger, 3 Mb AD deletion. Overall, the deletion of genes in the AB region largely explains the observed low IQ in the 22q11.2DS population. However, our results also indicate that haploinsufficiency of genes in the LCR22B-D region (BD) exert an additional negative impact on IQ. Furthermore, we did not find evidence of a confounding effect of severe congenital heart disease on IQ scores in our cohort.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22 , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/psicología , Adolescente , Adulto , Niño , Femenino , Humanos , Discapacidad Intelectual/genética , Pruebas de Inteligencia , MasculinoRESUMEN
Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1(+/+) and Tbx1(-/-) embryos at stages E9.5 (somites 20-25) and E10.5 (somites 30-35). Basic helix-loop-helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1(Cre) and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1(-/-) embryos. Using Tbx1(Cre) knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1(Cre) and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles.
Asunto(s)
Diferenciación Celular/genética , Masticación/genética , Músculos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Animales , Apoptosis/genética , Supervivencia Celular/genética , Desarrollo Embrionario/genética , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Faringe/metabolismoRESUMEN
During virus assembly, HIV-1 Gag-Pol is packaged into virions via interaction with Pr55gag. Studies suggest that Gag-Pol by itself is incapable of virus particle assembly or cell release, perhaps due to the lack of a budding domain in the form of p6gag, which is truncated within Gag-Pol because of a ribosomal frameshift during Gag translation. Additionally (or alternatively), large molecular size may not support Gag-Pol assembly into virus-like particles (VLPs) or release from cells. To test these hypotheses, we constructed Gag-Pol expression vectors retaining and lacking p6gag, and then reduced Gag-Pol molecular size by removing various lengths of the Pol sequence. Results indicate that Gag-Pol constructs retaining p6gag were capable of forming VLPs with a WT HIV-1 particle density. Gag-Pol molecular size reduction via partial removal of the Pol sequence mitigated the Gag-Pol assembly defect to a moderate degree. Our results suggest that the Gag-Pol assembly and budding defects are largely due to a lack of p6gag, but also in part due to size limitation.
Asunto(s)
VIH-1/fisiología , Ensamble de Virus , Liberación del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Análisis Mutacional de ADN , VIH-1/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.
Asunto(s)
Variaciones en el Número de Copia de ADN , Síndrome de DiGeorge/genética , Cardiopatías Congénitas/genética , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Técnicas de Genotipaje , Cardiopatías Congénitas/diagnóstico , HumanosRESUMEN
Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6-1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22 , Síndrome de DiGeorge/genética , Adulto , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , MasculinoRESUMEN
Genome-wide association studies (GWAS) offer an excellent opportunity to identify the genetic variants underlying complex human diseases. Successful utilization of this approach requires a large sample size to identify single nucleotide polymorphisms (SNPs) with subtle effects. Meta-analysis is a cost-efficient means to achieve large sample size by combining data from multiple independent GWAS; however, results from studies performed on different populations can be variable due to various reasons, including varied linkage equilibrium structures as well as gene-gene and gene-environment interactions. Nevertheless, one should expect effects of the SNP are more similar between similar populations than those between populations with quite different genetic and environmental backgrounds. Prior information on populations of GWAS is often not considered in current meta-analysis methods, rendering such analyses less optimal for the detecting association. This article describes a test that improves meta-analysis to incorporate variable heterogeneity among populations. The proposed method is remarkably simple in computation and hence can be performed in a rapid fashion in the setting of GWAS. Simulation results demonstrate the validity and higher power of the proposed method over conventional methods in the presence of heterogeneity. As a demonstration, we applied the test to real GWAS data to identify SNPs associated with circulating insulin-like growth factor I concentrations.
Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metaanálisis como Asunto , Simulación por Computador , Ligamiento Genético , Genoma , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Tamaño de la MuestraRESUMEN
Background: For patients with hilar cholangiocarcinoma (HC) undergoing hemi-hepatectomy, there are controversies regarding the requirement of, indications for, and timing of preoperative biliary drainage (PBD). Dynamic three-dimensional volume reconstruction could effectively evaluate the regeneration of liver after surgery, which may provide assistance for exploring indications for PBD and optimal preoperative bilirubin value. The purpose of this study was to explore the indications for PBD and the optimal preoperative bilirubin value to improve prognosis for HC patients undergoing hemi-hepatectomy. Methods: We retrospectively analyzed the data of HC patients who underwent hemi-hepatectomy in the First Affiliated Hospital of China Medical University from 2012 to 2023. The liver regeneration rate was calculated using three-dimensional volume reconstruction. We analyzed the factors affecting the liver regeneration rate and occurrence of postoperative liver insufficiency. Results: This study involved 83 patients with HC, which were divided into PBD group (n=36) and non-PBD group (n=47). The preoperative bilirubin level may be an independent risk factor affecting the liver regeneration rate (P=0.014) and postoperative liver insufficiency (P=0.016, odds ratio=1.016, ß=0.016, 95% CI=1.003-1.029). For patients whose initial bilirubin level was >200 µmol/L (n=45), PBD resulted in better liver regeneration in the early stage (P=0.006) and reduced the incidence of postoperative liver insufficiency [P=0.012, odds ratio=0.144, 95% confidence interval (CI)=0.031-0.657]. The cut-off value of bilirubin was 103.15 µmol/L based on the liver regeneration rate. Patients with a preoperative bilirubin level of ≤103.15 µmol/L shown a better liver regeneration (P<0.01) and lower incidence of postoperative hepatic insufficiency (P=0.011, odds ratio=0.067, 95% CI=0.008-0.537). Conclusion: For HC patients undergoing hemi-hepatectomy whose initial bilirubin level is >200 µmol/L, PBD may result in better liver regeneration and reduce the incidence of postoperative liver insufficiency. Preoperative bilirubin levels ≤103.15 µmol/L maybe recommended for leading to a better liver regeneration and lower incidence of postoperative hepatic insufficiency.
RESUMEN
Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.
Asunto(s)
Incisivo , Células Madre Mesenquimatosas , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Incisivo/citología , Incisivo/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismoRESUMEN
ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.
Asunto(s)
Proteínas de Unión al ADN , Células Madre Mesenquimatosas , Proteínas Represoras , Factores de Transcripción , Animales , Ratones , Activinas/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína con Dedos de Zinc GLI1RESUMEN
Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision. We show that Fgfr1 is expressed in the mesenchymal progenitor cells and their progeny during tooth root development. Loss of Fgfr1 in Gli1+ progenitors leads to hyperproliferation and differentiation, which causes narrowed periodontal ligament (PDL) space with abnormal cementum/bone formation leading to ankylosis. We further show that aberrant activation of WNT signaling and mechanosensitive channel Piezo2 occurs after loss of FGF signaling in Gli1-CreER;Fgfr1fl/fl mice. Overexpression of Piezo2 leads to increased osteoblastic differentiation and decreased Piezo2 leads to downregulation of WNT signaling. Mechanistically, an FGF/PIEZO2/WNT signaling cascade plays a crucial role in modulating the fate of progenitors during root morphogenesis. Downregulation of WNT signaling rescues tooth ankylosis in Fgfr1 mutant mice. Collectively, our findings uncover the mechanism by which FGF signaling regulates the fate decisions of stem/progenitor cells, and the interactions among signaling pathways and mechanotransduction during tooth root development, providing insights for future tooth root regeneration.