RESUMEN
As a superior self-protection strategy, invisibility has been a topic of long-standing interest in both academia and industry, because of its potential for intriguing applications that have only appeared thus far in science fiction. However, due to the strong dispersion of passive materials, achieving cross-wavelength invisibility remains an open challenge. Inspired by the natural ecological relationship between transparent midwater oceanic animals and the cross-wavelength detection strategy of their predators, we propose a cross-wavelength invisibility concept that integrates various invisibility tactics, where a Boolean metamaterial design procedure is presented to balance divergent material requirements over cross-scale wavelengths. As proof of concept, we experimentally demonstrate longwave cloaking and shortwave transparency simultaneously through a nanoimprinting technique. Our work extends the concept of stealth techniques from individual invisibility tactics targeting a single-wavelength spectrum to an integrated invisibility tactic targeting a cross-wavelength applications and may pave the way for development of cross-wavelength integrated metadevices.
RESUMEN
OBJECTIVE: To investigate the systemic changes of iron metabolism following manganese exposure. METHODS: Ninety-seven welders and 91 workers with no history of exposure to manganese were recruited from the same factory in Beijing serving as the exposure group and the control group respectively. The welding rods used were type J422. The concentration of the manganese in the air of the work place was determined respectively with the national standard method. The serum iron and manganese, ferritin, transferrin and transferrin receptors were measured with the graphite furnace atomic absorption spectrophotometry and ELISA in both groups. RESULTS: The permissible concentration-STEL of ambient Mn in welders' breathing zone ranged from 0.53 mg/m(3) to 2.19 mg/m(3), while the permissible concentration-TWA of ambient Mn was between 0.29 mg/m(3) and 0.92 mg/m(3) in the breathing zone of the workplace. Serum Mn and Fe concentrations in welders were about 1.40 times (P < 0.0l) and 1.2 times (P < 0.01), respectively, higher than those of control subjects. At the same time, the transferrin concentrations in serum were significantly higher (about 1.2 times, P < 0.05) in welders than in controls. In contrast, transferrin receptors were significantly lower (about 1.2 times) in exposed subjects than controls (P = 0.001). There was no difference in serum ferritin between the two groups (P = 0.112). Although there was no significant trend, the serum ferritin level was increased by 18% in comparison with that of the control. The abnormal percentage of serum Fe and Serum Mn in welders were 55.67% and 67.01% respectively, higher than those of control subjects. In addition, the correlations between all indicators and the duration of employment were not observed. CONCLUSION: The long term exposure to the manganese can induce the disorder of the iron metabolism, which is found in the expression of increase of the serum iron and transferrin as well as the decrease of transferrin receptors.