Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Tissue Bank ; 20(2): 209-220, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30854603

RESUMEN

The treatment of articular cartilage defects has become a major clinical concern. Currently, additional efforts are necessary to develop effective methods to cure this disease. In this work, we combined gene therapy with tissue engineering methods to test their effect on cartilage repair. In in vitro experiments, we obtained C-type natriuretic peptide (CNP) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) by transfection with recombinant adenovirus containing the CNP gene and revealed that CNP gene-modified BMSCs had good chondrogenic differentiation ability. By the freeze-drying method, we successfully synthesized a chitosan/silk fibroin (CS/SF) porous scaffold, which had a suitable aperture size for chondrogenesis. Then, we loaded CNP gene-modified BMSCs onto CS/SF scaffolds and tested their effect on repairing full-thickness cartilage defects in rat joints. The gross morphology and histology examination results showed that the composite of the CNP gene-modified BMSCs and CS/SF scaffolds had better repair effects than those of the other three groups at each time point. Additionally, compared to the group with BMSCs and scaffolds, we found that there was more cartilage matrix in the CNP gene-modified BMSCs and CS/SF scaffolds group. Data obtained in the present study suggest that the composite of CNP gene-modified BMSCs and CS/SF scaffolds represent promising strategies for repairing focal cartilage lesions.


Asunto(s)
Cartílago Articular/citología , Regeneración Tisular Dirigida/métodos , Células Madre Mesenquimatosas/citología , Péptido Natriurético Tipo-C/genética , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Adenoviridae/genética , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Cartílago Articular/crecimiento & desarrollo , Células Cultivadas , Quitosano/química , Fibroínas/química , Terapia Genética/métodos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Sprague-Dawley , Transfección
2.
Stem Cells ; 32(7): 1890-903, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24496849

RESUMEN

Inefficient homing of systemically infused mesenchymal stem cells (MSCs) limits the efficacy of existing MSC-based clinical graft-versus-host disease (GvHD) therapies. Secondary lymphoid organs (SLOs) are the major niches for generating immune responses or tolerance. MSCs home to a wide range of organs, but rarely to SLOs after intravenous infusion. Thus, we hypothesized that targeted migration of MSCs into SLOs may significantly improve their immunomodulatory effect. Here, chemokine receptor 7 (CCR7) gene, encoding a receptor that specifically guides migration of immune cells into SLOs, was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (MSCs/CCR7). We found that infusion of MSCs/CCR7 potently prolonged the survival of GvHD mouse model. The infused MSCs/CCR7 migrate to SLOs, relocate in proximity with T lymphocytes, therefore, potently inhibited their proliferation, activation, and cytotoxicity. Natural killer (NK) cells contribute to the early control of leukemia relapse. Although MSCs/CCR7 inhibited NK cell activity in vitro coculture, they did not impact on the proportion and cytotoxic capacities of NK cells in the peripheral blood of GvHD mice. In an EL4 leukemia cell loaded GvHD model, MSCs/CCR7 infusion preserved the graft-versus-leukemia (GvL) effect. In conclusion, this study demonstrates that CCR7 guides migration of MSCs to SLOs and thus highly intensify their in vivo immunomodulatory effect while preserving the GvL activity. This exciting therapeutic strategy may improve the clinical efficacy of MSC based therapy for immune diseases.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Efecto Injerto vs Leucemia , Tejido Linfoide/inmunología , Células Madre Mesenquimatosas/fisiología , Receptores CCR7/fisiología , Animales , Diferenciación Celular , Línea Celular , Quimiotaxis , Humanos , Inmunomodulación , Células Asesinas Naturales/inmunología , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Linfocitos T/inmunología
3.
ACS Nano ; 18(12): 8777-8797, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488479

RESUMEN

Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.


Asunto(s)
Vesículas Extracelulares , Hidrogeles , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/metabolismo , Pulpa Dental , Diferenciación Celular , Regeneración Ósea , Osteogénesis , Células Madre , Ácido Hialurónico/farmacología , Vesículas Extracelulares/metabolismo
4.
Bioact Mater ; 27: 271-287, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37122901

RESUMEN

Cell sheet engineering has been proven to be a promising strategy for cardiac remodeling post-myocardial infarction. However, insufficient mechanical strength and low cell retention lead to limited therapeutic efficiency. The thickness and area of artificial cardiac patches also affect their therapeutic efficiency. Cardiac patches prepared by combining cell sheets with electrospun nanofibers, which can be transplanted and sutured to the surface of the infarcted heart, promise to solve this problem. Here, we fabricated a novel cardiac patch by stacking brown adipose-derived stem cells (BADSCs) sheet layer by layer, and then they were combined with multi-walled carbon nanotubes (CNTs)-containing electrospun polycaprolactone/silk fibroin nanofibers (CPSN). The results demonstrated that BADSCs tended to generate myocardium-like structures seeded on CPSN. Compared with BADSCs suspension-containing electrospun nanofibers, the transplantation of the CPSN-BADSCs sheets (CNBS) cardiac patches exhibited accelerated angiogenesis and decreased inflammation in a rat myocardial infarction model. In addition, the CNBS cardiac patches could regulate macrophage polarization and promote gap junction remodeling, thus restoring cardiac functions. Overall, the hybrid cardiac patches made of electrospun nanofibers and cell sheets provide a novel solution to cardiac remodeling after ischemic myocardial infarction.

5.
Stem Cell Res Ther ; 13(1): 27, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073981

RESUMEN

BACKGROUND: The homeostasis of mesenchymal stem cells (MSCs) is modulated by both their own intracellular molecules and extracellular milieu signals. Hematopoiesis in the bone marrow is maintained by niche cells, including MSCs, and it is indispensable for life. The role of MSCs in maintaining hematopoietic homeostasis has been fully elucidated. However, little is known about the mechanism by which hematopoietic cells reciprocally regulate niche cells. The present study aimed to explore the close relationship between MSCs and hematopoietic cells, which may be exploited for the development of new therapeutic strategies for related diseases. METHODS: In this study, we isolated cells from the offspring of Tie2Cre + and Ptenflox/flox mice. After cell isolation and culture, we investigated the effect of hematopoietic cells on MSCs using various methods, including flow cytometry, adipogenic and osteogenic differentiation analyses, quantitative PCR, western bloting, and microCT analysis. RESULTS: Our results showed that when the phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene was half-deleted in hematopoietic cells, hematopoiesis and osteogenesis were normal in young mice; the frequency of erythroid progenitor cells in the bone marrow gradually decreased and osteogenesis in the femoral epiphysis weakened as the mice grew. The heterozygous loss of Pten in hematopoietic cells leads to the attenuation of osteogenic differentiation and enhanced adipogenic differentiation of MSCs in vitro. Co-culture with normal hematopoietic cells rescued the abnormal differentiation of MSCs, and in contrast, MSCs co-cultured with heterozygous null Pten hematopoietic cells showed abnormal differentiation activity. Co-culture with erythroid progenitor cells also revealed them to play an important role in MSC differentiation. CONCLUSION: Our data suggest that hematopoietic cells function as niche cells of MSCs to balance the differentiation activity of MSCs and may ultimately affect bone development.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Células de la Médula Ósea , Diferenciación Celular/fisiología , Células Cultivadas , Hematopoyesis/genética , Ratones
6.
Dent Mater J ; 40(5): 1100-1108, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33980747

RESUMEN

The aim of this study was to optimize the preparation method of polymethyl methacrylate (PMMA) denture base loaded with nano silver (NAg), to more effectively and safely impart sustainable antibacterial functions. NAg solution was synthetized and mixed with acrylic acid and methyl methyacrylate (MMA) monomer in order to prepare a new type of NAg solution (NS)/polymer methyl methacrylate denture base specimens (NS/PMMA). The surface morphology, mechanical strength, antimicrobial activity, anti-aging performance, cytotoxicity and biocompatibility of NS/PMMA denture base were evaluated in comparison with specimens fabricated using traditional NAg adding methods and NAg-free denture base. The aesthetic characteristics and mechanical strength of NS/PMMA denture base met the clinical application requirements. Meanwhile, NS/PMMA denture base showed better antibacterial activity, anti-aging properties, no cytotoxicity and displayed exceptional biocompatibility. NS/PMMA denture base thus has great potential for clinical application.


Asunto(s)
Nanopartículas del Metal , Polimetil Metacrilato , Resinas Acrílicas , Animales , Bases para Dentadura , Estética Dental , Ensayo de Materiales , Plata , Propiedades de Superficie
7.
Front Bioeng Biotechnol ; 8: 564731, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042966

RESUMEN

BACKGROUND: Fractures are a medical disease with a high incidence, and about 5-10% of patients need bone transplantation to fill the defect. In this study, we aimed to synthesize a new type of coralline hydroxyapatite (CHA)/silk fibroin (SF)/glycol chitosan (GCS)/difunctionalized polyethylene glycol (DF-PEG) self-healing hydrogel and to evaluate the therapeutic effects of this novel self-healing hydrogel as a human umbilical cord mesenchymal stem cells (hucMSC)-derived exosome carrier on bone defects in SD rat. METHODS: HucMSCs were isolated from fetal umbilical cord tissue and characterized by surface antigen analysis and pluripotent differentiation in vitro. The cell supernatant after ultracentrifugation was collected to isolate exosomes, which were characterized by transmission electron microscopy and western blot analysis. In vitro cell induction experiments were performed to observe the effects of hucMSC-derived exosomes on the biological behavior of mouse osteoblast progenitor cells (mOPCs) and human umbilical vein endothelial cells (HUVECs). The CHA/SF/GCS/DF-PEG hydrogels were prepared using DF-PEG as the gel factor and then structural and physical properties were characterized. HucMSCs-derived exosomes were added to the hydrogel and their effects were evaluated in SD rats with induced femoral condyle defect. These effects were analyzed by X-ray and micro-CT imaging and H&E, Masson and immunohistochemistry staining. RESULTS: HucMSC-derived exosomes can promote osteogenic differentiation of mOPCs and promote the proliferation and migration of HUVECs. The CHA/SF/GCS/DF-PEG hydrogel has a high self-healing capacity, perfect surface morphology and the precipitated CHA crystals have a small size and low crystallinity similar to natural bone minerals. The MTT results showed that the hydrogel was non-toxic and have a good biocompatibility. The in vivo studies have shown that the hydrogel containing exosomes could effectively promote healing of rat bone defect. The histological analysis revealed more new bone tissue and morphogenetic protein 2 (BMP-2) in the hydrogel-exosome group. In addition, the hydrogel-exosome group had the highest microvessel density. CONCLUSION: A self-healing CHA/SF/GCS/DF-PEG hydrogel was successfully prepared. The hydrogel has excellent comprehensive properties and is expected to become a new type of bone graft material. This hydrogel has the effect of promoting bone repair, which is more significant after the addition of hucMSC-derived exosomes.

8.
ACS Appl Mater Interfaces ; 12(50): 55659-55674, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33327053

RESUMEN

Diabetic skin ulcer is one of the severe complications of diabetes mellitus, which has a high incidence and may cause death or disability. Platelet-rich plasma (PRP) is widely used in the treatment of diabetic wounds due to the effect of growth factors (GFs) derived from it. However, the relatively short half-life of GFs limits their applications in clinics. In addition, the presence of a large amount of proteases in the diabetic wound microenvironment results in the degradation of GFs, which further impedes angiogenesis and diabetic wound healing. In our study, we fabricated a self-healing and injectable hydrogel with a composite of chitosan, silk fibroin, and PRP (CBPGCTS-SF@PRP) for promoting diabetic wound healing. CBPGCTS-SF@PRP could protect PRP from enzymatic hydrolysis, release PRP sustainably, and enhance the chemotaxis of mesenchymal stem cells. The results showed that it could promote the proliferation of repair cells in vitro. Moreover, it could enhance wound healing by expediting collagen deposition, angiogenesis, and nerve repair in a type 2 diabetic rat model and a rat skin defect model. We hope that this study will offer a new treatment for diabetic nonhealing wounds in clinics.


Asunto(s)
Materiales Biocompatibles/farmacología , Hidrogeles/química , Plasma Rico en Plaquetas/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Benzaldehídos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Proliferación Celular/efectos de los fármacos , Quitosano/química , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/patología , Fibroínas/química , Humanos , Hidrogeles/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Neovascularización Fisiológica/efectos de los fármacos , Fibras Nerviosas/fisiología , Plasma Rico en Plaquetas/química , Polietilenglicoles/química , Ratas , Regeneración/efectos de los fármacos , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/patología
9.
J Mater Chem B ; 8(32): 7197-7212, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32633312

RESUMEN

Refractory wounds caused by microbial infection impede wound healing, vascular regeneration, nerve system repair and the regeneration of other skin appendages. In addition, large-area infected wounds cause the appearance of multidrug-resistant (MDR) bacterial strains, which pose a major challenge both in clinical and scientific research. Although many stem cell-derived exosomes have been demonstrated to promote skin repair and regeneration, exosomes are seldom applied in the treatment of infective wounds due to the lack of antimicrobial function. In this study, we fabricated an asymmetric wettable dressing with a composite of exosomes and silver nanoparticles (CTS-SF/SA/Ag-Exo dressing) for promoting angiogenesis, nerve repair and infected wound healing. The CTS-SF/SA/Ag-Exo dressing possesses multifunctional properties including broad-spectrum antimicrobial activity, promoting wound healing, retaining moisture and maintaining electrolyte balance. It can effectively inhibit the growth of bacterial and promote the proliferation of human fibroblasts in vitro. Moreover, the in vivo results show that the CTS-SF/SA/Ag-Exo dressing enhanced wound healing by accelerating collagen deposition, angiogenesis and nerve repair in a P. aeruginosa infected mouse skin wound defect model. We hope that this dressing will provide a solution for the repair of infected wounds for treatments in the clinic.


Asunto(s)
Antibacterianos/química , Vendajes , Quitosano/química , Fibroínas/química , Nanopartículas del Metal/química , Plata/química , Animales , Antibacterianos/farmacología , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Exosomas/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Plata/farmacología , Piel , Humectabilidad , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico
10.
Eur J Pharmacol ; 884: 173350, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32726654

RESUMEN

Neuregulin 4 (Nrg4) is a brown fat-enriched endocrine factor that exerts beneficial metabolic effects on insulin resistance and hepatic steatosis. Autophagy is a mechanism that is essential for preventing hepatic steatosis. The aim of this study was to explore whether Nrg4 ameliorates hepatic steatosis by inducing autophagy. Aged C57BL/6 mice were maintained on a high fat diet with or without Nrg4 intervention for 3 months. Lipid accumulation in the liver was investigated. Autophagy related protein levels along with related signaling pathways that regulate autophagy were evaluated. In addition, the effects of Nrg4 on autophagy were also determined in cultured L-02 cells. Nrg4 decreased high-fat induced intrahepatic lipid content both in vivo and in vitro. Autophagy level in the liver also decreased in obese mice and Nrg4 intervention reactivated autophagy. Further, Nrg4 intervention was found to have activated autophagy via the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Moreover, when the AMPK/mTOR pathway was suppressed or autophagy was inhibited, the beneficial effects of Nrg4 intervention on hepatic steatosis were diminished. These results indicated that Nrg4 intervention attenuated hepatic steatosis by promoting autophagy in the liver of aged obese mice. Additionally, Nrg4 induced autophagy via the AMPK/mTOR signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Hígado/efectos de los fármacos , Neurregulinas/farmacología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Serina-Treonina Quinasas TOR/metabolismo , Factores de Edad , Animales , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Activación Enzimática , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal
11.
J Cell Mol Med ; 13(9B): 3570-90, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19426158

RESUMEN

Human embryonic stem cells (hESCs) are considered as useful tools for pre-clinical studies in regenerative medicine. Although previous reports have shown direct chondrogenic differentiation of mouse and hESCs, low yield and cellular heterogenicity of the resulting cell population impairs the generation of sufficient numbers of differentiated cells for further testing and applications. Based on our previously established high-density micromass model system to study hESC chondrogenesis, we evaluated the effects of transforming growth factor (TGF)-beta(1) and bone morphogenetic protein-2 on early stages of chondrogenic differentiation and commitment by hESCs. Significant chondrogenic induction of hESCs, as determined by quantitative measurements of cartilage-related gene expression and matrix protein synthesis, was achieved in the presence of TGF-beta(1). By means of selective growth factor combination (TGF-beta(1), FGF-2 and platelet-derived growth factor-bb) and plating on extracellular matrix substratum, we report here the reproducible isolation of a highly expandable, homogenous and unipotent chondrogenic cell population, TC1, from chondrogenically committed hESCs. Like primary chondrocytes, TC1 rapidly dedifferentiates upon isolation and monolayer expansion but retains the chondrogenic differentiation potential and responds to TGF-beta(1) for cartilaginous tissue formation both in vitro and in vivo. In addition, TC1 displays a somatic cell cycle kinetics, a normal karyotype and does not produce teratoma in vivo. Thus, TC1 may provide a potential source of chondrogenic cells for drug testing, gene therapy and cell-based therapy.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Técnicas de Cultivo de Célula , Condrocitos/citología , Células Madre Embrionarias/citología , Animales , Cartílago/citología , Cartílago Articular/citología , Diferenciación Celular , Medio de Cultivo Libre de Suero/metabolismo , Cartilla de ADN/genética , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Cinética , Ratones , Factor de Crecimiento Transformador beta1/metabolismo
12.
Swiss Med Wkly ; 148: w14678, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30294773

RESUMEN

AIM: The aim of this study was to analyse the immune influence of a parabiosis model on tumour-bearing mice. METHODS: Parabiosis was established between C57BL/6 wild-type mice expressing green fluorescent protein (GFP+) and C57BL/6 wild-type mice without green fluorescent protein (GFP) to ensure blood cross-circulation between animals, and then the expression of CD4+ T cells, CD8+ T cells and interleukins 2, 4 and 10, and interferon-gamma (INF-γ) in spleen cells of parabiosis model mice were examined with flow cytometry. At day 8 and day 14 after conjoined surgery, we were aiming to sample tumour tissue in the parabiosis mice and observe changes of CD3, CD4, CD8, CD31, IFN-γ and vascular endothelial growth factor (VEGF) through immunohistochemical analysis. RESULTS: The interaction of blood was established on the third day with modelling rate of 85.7% after blood interaction. The healthy cells of GFP+ C57 mice entered the blood circulation of tumour-bearing mice via a connecting capillary network, playing a role in stimulating CD4+ and CD8+ cells in the tumour-bearing mice so that CD4+ cells increased more in tumour-bearing mice than in the positive control group (p <0.05). The number of GFP+ cells that were detected in a tumour-bearing mouse was small, but GFP+ cells can stimulate the mouse itself to generate more CD4+/interleukin (IL)-4, CD4+/IL-10 (p <0.05).The numbers of CD4+/IL-2, CD4+/IL-4 and CD4+/IL-10 among the GFP+ mice were higher than those in the negative control group(p <0.05).The levels of IFN-γ in both mice in the parabiosis model were decreased (p <0.05). The rate of CD4+/CD8+ in parabiosis GFP+ mice was higher than in the negative control group (p <0.05). In immunohistochemical tests, the rates of CD3, CD4, CD8 and IFN-γ positive cells was higher than in the positive control group, with their optical densities of 0.32 ± 0.63, 0.33 ± 0.00, 0.31 ± 0.91 and 0.28 ± 0.14 respectively (p <0.05). The expression of CD31 (0.19 ± 0.50) and VEGF (0.19 ± 0.21) were lower when compared with the positive control group, with no significant difference. CD31 and VEFG cell expression was low, at 0.19 ± 0.50 and 0.19 ± 0.21, respectively, compared with the positive control group (p >0.05). Values for CD31 and VEGF cells in the positive control group were higher, at 0.32 ± 0.35 and 0.29 ± 0.35, respectively, but when compared with the parabiosis tumour-bearing group, there was no significant difference. The expression of CD3, CD4, CD8 and IFN-γ cells at day 8 was low: 0.22, 0.17, 0.15 and 0.16, respectively. When compared with the parabiosis tumour-bearing group, there was no significant difference. CONCLUSIONS: The established allogeneic parabiosis mice model can be well adapted to the conjoined state of mice and be applied in wide medical experiments. The parabiosis model has played an important role in studying immune regulation, which provides a basis for the future tumour immunotherapy. Parabiosis models can stimulate tumour-bearing mice to generate CD3, CD4, CD8 and IFN-γ, and play a notable role in immune regulation and tumour destruction. The positive expression rates of CD31 and VEFG cells in the parabiosis tumour-bearing group were lower; however, when compared with the positive control group, there was no significant difference.


Asunto(s)
Circulación Sanguínea/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interleucinas/inmunología , Neoplasias , Parabiosis , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Citometría de Flujo/métodos , Interleucinas/análisis , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/metabolismo
13.
Circulation ; 113(18): 2229-37, 2006 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-16651472

RESUMEN

BACKGROUND: Embryonic stem (ES) cells can terminally differentiate into all types of somatic cells and are considered a promising source of seed cells for tissue engineering. However, despite recent progress in in vitro differentiation and in vivo transplantation methodologies of ES cells, to date, no one has succeeded in using ES cells in tissue engineering for generation of somatic tissues in vitro for potential transplantation therapy. METHODS AND RESULTS: ES-D3 cells were cultured in a slow-turning lateral vessel for mass production of embryoid bodies. The embryoid bodies were then induced to differentiate into cardiomyocytes in a medium supplemented with 1% ascorbic acid. The ES cell-derived cardiomyocytes were then enriched by Percoll gradient centrifugation. The enriched cardiomyocytes were mixed with liquid type I collagen supplemented with Matrigel to construct engineered cardiac tissue (ECT). After in vitro stretching for 7 days, the ECT can beat synchronously and respond to physical and pharmaceutical stimulation. Histological, immunohistochemical, and transmission electron microscopic studies further indicate that the ECTs both structurally and functionally resemble neonatal native cardiac muscle. Markers related to undifferentiated ES cell contamination were not found in reverse transcriptase-polymerase chain reaction analysis of the Percoll-enriched cardiomyocytes. No teratoma formation was observed in the ECTs implanted subcutaneously in nude mice for 4 weeks. CONCLUSIONS: ES cells can be used as a source of seed cells for cardiac tissue engineering. Additional work remains to demonstrate engraftment of the engineered heart tissue in the case of cardiac defects and its functional integrity within the host's remaining healthy cardiac tissue.


Asunto(s)
Implantes Experimentales , Miocitos Cardíacos/trasplante , Organoides/fisiología , Células Madre/citología , Ingeniería de Tejidos/métodos , Animales , Ácido Ascórbico/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas/citología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/trasplante , Colágeno , Colágeno Tipo I , Combinación de Medicamentos , Embrión de Mamíferos/citología , Glutamina/farmacología , Laminina , Mercaptoetanol/farmacología , Ratones , Ratones Desnudos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Proteoglicanos , Células Madre/efectos de los fármacos , Estrés Mecánico , Ingeniería de Tejidos/instrumentación
14.
Front Physiol ; 8: 143, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337152

RESUMEN

Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes.

15.
Mater Sci Eng C Mater Biol Appl ; 76: 73-80, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482584

RESUMEN

This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus.


Asunto(s)
Nanopartículas del Metal , Antibacterianos , Bacterias , Quitosano , Plata
16.
Front Physiol ; 8: 904, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163228

RESUMEN

Background: Delayed wound healing in diabetic patients is one of the most challenging complications in clinical medicine, as it poses a greater risk of gangrene, amputation and even death. Therefore, a novel method to promote diabetic wound healing is of considerable interest at present. Previous studies showed that injection of MSC-derived exosomes has beneficial effects on wound healing. In current studies, we aimed to isolate exosomes derived from gingival mesenchymal stem cells (GMSCs) and then loading them to the chitosan/silk hydrogel sponge to evaluate the effects of this novel non-invasive method on skin defects in diabetic rats. Methods: GMSCs were isolated from human gingival connective tissue and characterized by surface antigen analysis and in vitro multipotent differentiation. The cell supernatant was collected to isolate the exosomes. The exosomes were characterized by transmission electron microscopy, Western blot and size distribution analysis. The chitosan/silk-based hydrogel sponge was prepared using the freeze-drying method and then structural and physical properties were characterized. Then, the exosomes were added to the hydrogel and tested in a diabetic rat skin defect model. The effects were evaluated by wound area measurement, histological, immunohistochemical and immunofluorescence analysis. Results: We have successfully isolated GMSCs and exosomes with a mean diameter of 127 nm. The chitosan/silk hydrogel had the appropriate properties of swelling and moisture retention capacity. The in vivo studies showed that the incorporating of GMSC-derived exosomes to hydrogel could effectively promote healing of diabetic skin defects. The histological analysis revealed more neo-epithelium and collagen in the hydrogel-exosome group. In addition, the hydrogel-exosome group had the highest microvessel density and nerve density. Conclusions: The combination of GMSC-derived exosomes and hydrogel could effectively promote skin wound healing in diabetic rats by promoting the re-epithelialization, deposition and remodeling of collagen and by enhancing angiogenesis and neuronal ingrowth. These findings not only provide new information on the role of the GMSC-derived exosomes in wound healing but also provide a novel non-invasive application method of exosomes with practical value for skin repair.

17.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 33(1): 37-42, 2017 Jan.
Artículo en Zh | MEDLINE | ID: mdl-30070795

RESUMEN

Objective: To investigate the effects of PRX-2 gene on phenotype changes in epidermal stem cells differentiating into sweat gland cells. Methods: Epidermal stem cells and sweat gland cells separated and cultured from healthy foreskin and adult full-thick skin respectively, were identified by immunofluorescence staining. Lentiviral vector-mediated overexpression and knockdown of PRX-2 gene in epidermal stem cells were performed respectively,with empty vector-mediated epidermal stem cells as a control group. Overexpression blank control and know down group's PRX-2 expressions in gene and protein levels were detected using RT-PCR and Western blot technology. The ESCs of each group were co-cultured with sweat gland cells through transwell plate, and the expressions of CEA and ß1 integrin in epidermal stem cells were determined by flow cytometry before and after co-culturing. Results: Epidermal stem cells and sweat gland cells were in line with their respective specific antigens .Before co-cultured, epidermal stem cells highly expressed ß1 integrin (98.69 ± 0.67)%,hardly expressed CEA (6.20 ± 3.15)%.After co-cultured,ß1 integrin expression levels were showed as knockdown group (19.30 ± 0.53) % <blank control group (65.77 ± 2.32)% < overexpress group (92.63 ± 10.97)%,and CEA expression levels as knockdown (95.43 ±2.36)% > blank control group (51.20 ±0.79)% > overexpress group (45.91 ±0.93)%.There had significant differences between those of each two groups. Conclusions: PRX-2 gene can inhibit the phenotypic change of Epidermal Stem Cells differentiating into Sweat Gland Cells and improve the ability to maintain their own specific antigens.


Asunto(s)
Diferenciación Celular/genética , Células Epiteliales/citología , Proteínas de Homeodominio/genética , Células Madre/citología , Glándulas Sudoríparas/citología , Adulto , Células Cultivadas , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Citometría de Flujo , Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Lentivirus , Fenotipo , Células Madre/metabolismo
18.
J Mater Chem B ; 5(25): 4845-4851, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264000

RESUMEN

Controlling severe hemorrhages remains a challenge. Successful hemorrhage control depends on the speed and quality of blood clot formation. Fast deprivation of water from blood leads to the concentration of blood cells and coagulation factors and thus triggers blood clot formation. This inspired us to develop a new hemostatic material. In this study, we grafted sodium polyacrylate (SPA) onto the backbone of chitosan (CTS) and crosslinked with methacrylic anhydride-modified polyethylene glycol (MAAPEG) to provide a flexible and elastic inter-chain connection between SPA and CTS chains in the presence of a blowing agent to achieve a porous structure. By a simple one-pot reaction, we fabricated a soft, elastic porous xerogel sponge that could reach maximum water absorbency of 180 in less than 200 seconds. This SPA-co-chitosan xerogel sponge demonstrated superior hemostatic properties in thromboelastography (TEG®) test and in a rabbit lethal extremity arterial bleeding model as compared to zeolite granules, kaolin gauze, and chitosan granules. Furthermore, this hemostat worked as a whole to transfer external pressure to the bleeding area and was adhesive to wet wound tissue to seal the bleeding site. In general, the SPA-co-CTS sponge demonstrates a fast and powerful hemostatic effect both in vitro and in vivo, which is superior over the existing commercial products. It might be a promising first-aid device for severe hemorrhage control.

19.
ACS Appl Mater Interfaces ; 9(12): 10453-10460, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28271705

RESUMEN

The assembly of gold nanoparticles (AuNPs) to AuNP assemblies is of interest for cancer therapy and imaging. Herein we introduce a new and general paradigm, thermally triggered AuNP assembly, for the development of novel intelligent platforms for cancer photothermal therapy (PTT) and multimodal imaging. Site-specific conjugation of a thermally sensitive elastin-like polypeptide (ELP) to AuNPs yields thermally sensitive ELP-AuNPs. Interestingly, ELP-AuNPs can in situ form AuNP assemblies composed of short necklace-like gold nanostructures at elevated temperatures and thus show strong near-infrared light absorption and high photothermal effect. These thermally responsive properties of ELP-AuNPs enable simultaneous photothermal/photoacoustic/X-ray computed tomographic imaging and PTT of melanoma after single intratumoral injection of ELP-AuNPs. The thermally triggered assembly of a variety of nanoparticles with optical, electronic, and magnetic properties into nanoparticle assemblies may open new ways for the establishment of intelligent platforms for various applications in biomedicine.


Asunto(s)
Nanopartículas del Metal , Oro , Humanos , Imagen Multimodal , Neoplasias , Fototerapia
20.
Methods Enzymol ; 418: 267-83, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17141041

RESUMEN

Derivation of cardiomyocytes from embryonic stem cells would be a boon for treatment of the many millions of people worldwide who suffer significant cardiac tissue damage in a myocardial infarction. Such cells could be used for transplantation, either as loose cells, as organized pieces of cardiac tissue, or even as pieces of organs. Eventual derivation of human embryonic stem cells via somatic cell nuclear cloning would provide cells that not only may replace damaged cardiac tissue, but also would replace tissue without fear that the patient's immune system will reject the implant. Embryonic stem cells can differentiate spontaneously into cardiomyocytes. In vitro differentiation of embryonic stem cells normally requires an initial aggregation step to form structures called embryoid bodies that differentiate into a wide variety of specialized cell types, including cardiomyocytes. This chapter discusses methods of encouraging embryoid body formation, causing pluripotent stem cells to develop into cardiomyocytes, and expanding the numbers of cardiomyocytes so that the cells may achieve functionality in transplantation, all in the mouse model system. Such methods may be adaptable and/or modifiable to produce cardiomyocytes from human embryonic stem cells.


Asunto(s)
Miocitos Cardíacos/citología , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Separación Celular , Enfermedad Coronaria/patología , Medios de Cultivo , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Humanos , Ratones , Miocitos Cardíacos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA