Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Water Sci Technol ; 83(4): 894-905, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33617496

RESUMEN

Enough biomass of anaerobic ammonium oxidation (anammox) bacteria is essential for maintaining a stable partial nitrification/anammox (PN/A) wastewater treatment system. Present enrichment procedures are mainly labor-intensive and inconvenient for up-scaling. A simplified procedure was developed for enrichment of anammox biofilm by using secondary effluent as source water with no supplement of mineral medium and unstrict control of influent dissolved oxygen (DO). Anammox biofilm was successfully enriched in two pilot-scale reactors (XQ-cul and BT-cul) within 250 and 120 days, respectively. The specific anammox activity increased rapidly during the last 2 months in both reactors and achieved 2.54 g N2-N/(m2·d) in XQ-cul and 1.61 g N2-N/(m2·d) in BT-cul. Similar microbial diversity and community structure were obtained in the two reactors despite different secondary effluent being applied from two wastewater treatment plants. Anaerobic ammonium oxidizing bacteria genera abundance reached up to 37.4% and 43.1% in XQ-cul and BT-cul biofilm, respectively. Candidatus Brocadia and Ca. Kuenenia dominated the enriched biofilm. A negligible adverse effect of residual organics and influent DO was observed by using secondary effluent as source water. This anammox biofilm enrichment procedure could facilitate the inoculation and/or bio-augmentation of large-scale mainstream PN/A reactors.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Biopelículas , Nitrificación , Nitritos , Nitrógeno , Oxidación-Reducción , Aguas Residuales , Agua
2.
Biochem Biophys Res Commun ; 513(2): 306-312, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30954223

RESUMEN

Hyposmia occurs during the prodromal phase of Parkinson's disease (PD), while the underlying mechanisms remain unclear. Discussed are altered dopamine content and impairment of neurogenesis of olfactory bulbs (OB), which has been suggested to be linked to olfactory dysfunction. Given that mouse with reduced vesicular monoamine transporter 2 (VMAT2) expression is now deemed as a relatively new PD animal model simulating motor and nonmotor symptoms, it may provide a new insight into investigating the mechanisms of hyposmia in the context of PD. In this study, we examined the effect of subacute administration of MPTP on mice with a reduced expression of VMAT2, focusing on the histopathological and biochemical alterations, specifically, TH expression level, dopamine content as well as neurogenesis in OB. Interestingly, mice with a reduced VMAT2 expression displayed more obvious olfactory impairment in response to MPTP administration accompanied by markedly decreased dopaminergic interneurons in OB. Furthermore, neurogenesis in OB was also further impaired after MPTP due to reduced VMAT2 expression. We therefore demonstrated that reduced expression of VMAT2 contributed to the impairment of hyposmia, pathologically, the degeneration of extranigral systems and reduced neurogenesis might be the underlying mechanisms.


Asunto(s)
Regulación hacia Abajo , Enfermedad de Parkinson Secundaria/genética , Enfermedad de Parkinson Secundaria/fisiopatología , Proteínas de Transporte Vesicular de Monoaminas/genética , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Interneuronas/patología , Ventrículos Laterales/patología , Ventrículos Laterales/fisiopatología , Masculino , Ratones , Ratones Noqueados , Neurogénesis , Bulbo Olfatorio/patología , Bulbo Olfatorio/fisiopatología , Enfermedad de Parkinson Secundaria/patología
3.
Cell Mol Life Sci ; 74(20): 3741-3768, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28623510

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder implicitly marked by the substantia nigra dopaminergic neuron degeneration and explicitly characterized by the motor and non-motor symptom complexes. Apart from the nigrostriatal dopamine depletion, the immune and endocrine study findings are also frequently reported, which, in fact, have helped to broaden the symptom spectrum and better explain the pathogenesis and progression of PD. Nevertheless, based on the neural, immune, and endocrine findings presented above, it is still difficult to fully recapitulate the pathophysiologic process of PD. Therefore, here, in this review, we have proposed the neuroimmunoendocrine (NIE) modulatory network in PD, aiming to achieve a more comprehensive interpretation of the pathogenesis and progression of this disease. As a matter of fact, in addition to the classical motor symptoms, NIE modulatory network can also underlie the non-motor symptoms such as gastrointestinal, neuropsychiatric, circadian rhythm, and sleep disorders in PD. Moreover, the dopamine (DA)-melatonin imbalance in the retino-diencephalic/mesencephalic-pineal axis also provides an alternative explanation for the motor complications in the process of DA replacement therapy. In conclusion, the NIE network can be expected to deepen our understanding and facilitate the multi-dimensional management and therapy of PD in future clinical practice.


Asunto(s)
Hipotálamo/fisiopatología , Inflamación/fisiopatología , Enfermedad de Parkinson/fisiopatología , Animales , Relojes Circadianos , Dopamina/genética , Dopamina/inmunología , Neuronas Dopaminérgicas/inmunología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Predisposición Genética a la Enfermedad , Humanos , Hipotálamo/inmunología , Hipotálamo/metabolismo , Inflamación/genética , Inflamación/inmunología , Melatonina/genética , Melatonina/inmunología , Degeneración Nerviosa/genética , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/fisiopatología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/inmunología , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/inmunología , Pérdida de Peso , alfa-Sinucleína/genética , alfa-Sinucleína/inmunología
4.
Aging Dis ; 14(6): 2193-2214, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199590

RESUMEN

Increasing evidence has shown that gut dysbacteriosis may play a crucial role in neuroinflammation in Parkinson's disease (PD). However, the specific mechanisms that link gut microbiota to PD remain unexplored. Given the critical roles of blood-brain barrier (BBB) dysfunction and mitochondrial dysfunction in the development of PD, we aimed to evaluate the interactions among the gut microbiota, BBB, and mitochondrial resistance to oxidation and inflammation in PD. We investigated the effects of fecal microbiota transplantation (FMT) on the physiopathology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. The aim was to explore the role of fecal microbiota from PD patients and healthy human controls in neuroinflammation, BBB components, and mitochondrial antioxidative capacity via the AMPK/SOD2 pathway. Compared to control mice, MPTP-treated mice exhibited elevated levels of Desulfovibrio, whereas mice given FMT from PD patients exhibited enriched levels of Akkermansia and mice given FMT from healthy humans showed no significant alterations in gut microbiota. Strikingly, FMT from PD patients to MPTP-treated mice significantly aggravated motor impairments, dopaminergic neurodegeneration, nigrostriatal glial activation and colonic inflammation, and inhibited the AMPK/SOD2 signaling pathway. However, FMT from healthy human controls greatly improved the aforementioned MPTP-caused effects. Surprisingly, the MPTP-treated mice displayed a significant loss in nigrostriatal pericytes, which was restored by FMT from healthy human controls. Our findings demonstrate that FMT from healthy human controls can correct gut dysbacteriosis and ameliorate neurodegeneration in the MPTP-induced PD mouse model by suppressing microgliosis and astrogliosis, ameliorating mitochondrial impairments via the AMPK/SOD2 pathway, and restoring the loss of nigrostriatal pericytes and BBB integrity. These findings raise the possibility that the alteration in the human gut microbiota may be a risk factor for PD and provide evidence for potential application of FMT in PD preclinical treatment.

5.
Aging Dis ; 14(1): 204-218, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36818554

RESUMEN

Parkinson's disease (PD) and atypical parkinsonism (AP), including progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), share similar nonmotor symptoms. Quantitative electroencephalography (QEEG) can be used to examine the nonmotor symptoms. This study aimed to characterize the patterns of QEEG and functional connectivity (FC) that differentiate PD from PSP or MSA, and explore the correlation between the differential QEEG indices and nonmotor dysfunctions in PD and AP. We enrolled 52 patients with PD, 31 with MSA, 22 with PSP, and 50 age-matched health controls to compare QEEG indices among specific brain regions. One-way analysis of variance was applied to assess QEEG indices between groups; Spearman's correlations were used to examine the relationship between QEEG indices and nonmotor symptoms scale (NMSS) and mini-mental state examination (MMSE). FCs using weighted phase lag index were compared between patients with PD and those with MSA/PSP. Patients with PSP revealed higher scores on the NMSS and lower MMSE scores than those with PD and MSA, with similar disease duration. The delta and theta powers revealed a significant increase in PSP, followed by PD and MSA. Patients with PD presented a significantly lower slow-to-fast ratio than those with PSP in the frontal region, while patients with PD presented significantly higher EEG-slowing indices than patients with MSA. The frontal slow-to-fast ratio showed a negative correlation with MMSE scores in patients with PD and PSP, and a positive correlation with NMSS in the perception and mood domain in patients with PSP but not in those with PD. Compared to PD, MSA presented enhanced FC in theta and delta bands in the posterior region, while PSP revealed decreased FC in the delta band within the frontal-temporal cortex. These findings suggest that QEEG might be a useful tool for evaluating the nonmotor dysfunctions in PD and AP. Our QEEG results suggested that with similar disease duration, the cortical neurodegenerative process was likely exacerbated in patients with PSP, followed by those with PD, and lastly in patients with MSA.

6.
Aging Dis ; 12(7): 1675-1692, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34631214

RESUMEN

Cardiovascular autonomic dysfunctions (CAD) are prevalent in Parkinson's disease (PD). It contributes to the development of cognitive dysfunction, falls and even mortality. Significant progress has been achieved in the last decade. However, the underlying mechanisms and effective treatments for CAD have not been established yet. This review aims to help clinicians to better understand the pathogenesis and therapeutic strategies. The literatures about CAD in patients with PD were reviewed. References for this review were identified by searches of PubMed between 1972 and March 2021, with the search term "cardiovascular autonomic dysfunctions, postural hypotension, orthostatic hypotension (OH), supine hypertension (SH), postprandial hypotension, and nondipping". The pathogenesis, including the neurogenic and non-neurogenic mechanisms, and the current pharmaceutical and non-pharmaceutical treatment for CAD, were analyzed. CAD mainly includes four aspects, which are OH, SH, postprandial hypotension and nondipping, among them, OH is the main component. Both non-neurogenic and neurogenic mechanisms are involved in CAD. Failure of the baroreflex circulate, which includes the lesions at the afferent, efferent or central components, is an important pathogenesis of CAD. Both non-pharmacological and pharmacological treatment alleviate CAD-related symptoms by acting on the baroreflex reflex circulate. However, pharmacological strategy has the limitation of failing to enhance baroreflex sensitivity and life quality. Novel OH treatment drugs, such as pyridostigmine and atomoxetine, can effectively improve OH-related symptoms via enhancing residual sympathetic tone, without adverse reactions of supine hypertension. Baroreflex impairment is a crucial pathological mechanism associated with CAD in PD. Currently, non-pharmacological strategy was the preferred option for its advantage of enhancing baroreflex sensitivity. Pharmacological treatment is a second-line option. Therefore, to find drugs that can enhance baroreflex sensitivity, especially via acting on its central components, is urgently needed in the scientific research and clinical practice.

7.
Aging Dis ; 12(3): 801-811, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34094643

RESUMEN

The relationship between fibrinogen and white matter hyperintensities (WMHs) are inconsistent. Whether there are different relationships between WMHs and fibrinogen in disparate subtypes of cerebral small vessel disease (CSVD) remains unknown. Here, we investigated the roles of plasma fibrinogen in sporadic CSVD (sCSVD) and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) patients. We performed a cross-sectional study that included 74 CSVD patients (19 CADASIL and 55 sporadic) and 74 age- and gender-matched healthy controls (HCs). Plasma fibrinogen was determined, and the severity of WMHs in CSVD patients was rated according to Fazekas scales. Univariate analysis and ordinal logistic regression were performed to evaluate the relationship between fibrinogen and the severity of WMHs in CSVD. Both CADASIL and sCSVD patients showed significantly higher plasma fibrinogen levels than HCs. No significant difference in the plasma fibrinogen level was observed between CADASIL and sCSVD. Univariate analysis and ordinal logistic regression indicated that fibrinogen is an independent risk factor for the severity of WMHs in CADASIL patients (odds ratio [OR] =1.064; 95% Confidence interval (CI, 1.004-1.127); p =0.037). However, age (odds ratio [OR] =1.093; 95% CI (1.033-1.156); P = 0.002), but not fibrinogen (odds ratio [OR] =1.004; 95% CI (0.997-1.011); P=0.262), is an independent risk factor for the severity of WMHs in sCSVD patients. Our results suggest that high levels of plasma fibrinogen are associated with the severity of WMHs in CADASIL but not in sCSVD patients, indicating that the role of fibrinogen may be different in disparate subtypes of CSVD. A better understanding of fibrinogen may yield insights into the pathogenesis of CSVD.

8.
Front Neurol ; 10: 271, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949126

RESUMEN

Although the pathogenic mechanisms of Parkinson's disease (PD) remain unclear, ample empirical evidence suggests that oxidative stress is involved in the pathogenesis of this disease. The nuclear factor E2-related factor 2 (Nrf2) is known to activate several antioxidant response element (ARE)-driven antioxidative genes that prevents oxidative stress in vitro and in vivo. Moreover, it was documented that hydralazine is a potent Nrf2 activator. In this study, we tested whether hydralazine can attenuate 1-Methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced neurotoxicity in vitro and in vivo by activating Nrf2 and its downstream network of antioxidative genes. We found that treatment with hydralazine attenuated MPP+ or H2O2-induced loss of cell viability in human neuroblastoma cell line (SH-SY5Y). In addition, hydralazine significantly promoted the nuclear translocation of Nrf2, and upregulated the expression of its downstream antioxidative genes. Further, knockout of Nrf2 abolished the protection conferred by hydralazine on MPP+ -induced cell death. Similar findings were observed in vivo. Before, during, and after MPTP 30 mg/kg (i.p.) administration for 7 days, the mice were given hydralazine (Hyd) 51.7 mg/kg per day by oral gavage for 3 weeks. Oral administration of hydralazine ameliorated oxidative stress, MPTP-induced behavioral disorder, and loss of neurons of dopaminergic system in the substantia nigra (SN) and striatum, all of which were attributed to its ability to activate the Nrf2-ARE pathway. Hydralazine increased the migration of Nrf2 to the nucleus in dopaminergic neurons, enhanced the expression of its downstream antioxidative genes. Together, these datasets show that the Nrf2-ARE pathway mediates the protective effects of hydralazine on Parkinson's disease.

9.
Cell Death Dis ; 10(3): 174, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787269

RESUMEN

Recent researches regarding to exosomal involvement in alpha-synuclein (α-syn) transmission relating to the pathological process of Parkinson's disease (PD) have attracted considerable attention. It is highly desirable to make clear the diffusion process and cellular uptake of α-syn-associated exosomes and the underlying mechanism of exosomes-involved communication in the synucleinopathy pathogenesis. To determine the contribution of α-syn-associated exosomes to the initiation and progression of PD, plasma exosomes derived from PD patients were stereotaxically injected into the striatum of mice brains. Exosomes extracted from plasma diagnosed with PD contained monomeric and oligomeric α-syn. Here, we found that microglia display a high potency for uptake of plasma exosomes derived from PD patients, and therefore could be activated by exogenous exosomes in vitro and in vivo. In addition, immunofluorescent double staining verified the transfer of exogenous human exosomal α-syn to neurons. The release of human exosomal α-syn from microglia may facilitate this propagation. Finally, we described a mechanism underlying this potential role of microglia in the transmission of exosomal α-syn. Specifically, exogenous exosomes were found to dysregulate autophagy of the BV2 mouse microglia cell line with presentation of increased accumulation of intracellular α-syn and accelerated secretion of α-syn into extracellular space. These results suggest that microglia play a crucial role in the transmission of α-syn via exosomal pathways, in additional to idea that the progression of PD may be altered by the modulation of exosome secretion and/or microglial states.


Asunto(s)
Exosomas/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Autofagia , Línea Celular , Corteza Cerebelosa/metabolismo , Cuerpo Estriado/metabolismo , Exosomas/ultraestructura , Femenino , Humanos , Masculino , Ratones , Microglía/citología , Persona de Mediana Edad , Sustancia Negra/metabolismo , alfa-Sinucleína/genética
10.
Phytomedicine ; 60: 152954, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31130327

RESUMEN

BACKGROUND: It is established that natural medicines for Parkinson's disease (PD) provide an antioxidant activity in preventing dopaminergic neurons from degeneration. However, the underlying and related molecular details remain poorly understood. METHODS AND AIM: We review published in vitro and rodent studies of natural products in PD models with the aim to identify common molecular pathways contributing to the treatment efficacy. Commonly regulated genes were identified through the systemic literature search and further analyzed from a network perspective. FINDINGS: Approximately thirty different types of natural products have been investigated for their ability to regulate protein density and gene activity in various experimental systems. Most were found to attenuate neurotoxin-induced regulations. Three common PD pathways are involved. The most studied pathway was neuronal development/anti-apoptosis consisting of Bax/Bcl-2, caspases 3/9, and MAPK signaling. Another well studied was anti-inflammation comprising iNOS, nNOS, Nrf2/ARE, cytokines, TNFα, COX2 and MAPK signaling. The third pathway referred to dopamine transmission modulation with upregulated VMAT2, DAT, NURR1 and GDNF levels. To date, HIPK2, a conserved serine/threonine kinase and transcriptional target of Nrf2 in an anti-apoptosis signaling pathway, is the first protein identified as the direct binding target of a natural product (ZMHC). IMPLICATIONS: Natural products may utilize multiple and intercellular pathways at various steps to prevent DA neurons from degeneration. Molecular delineation of the mechanisms of actions is revealing new, perhaps combinational therapeutic approaches to stop the progression of DA degeneration.


Asunto(s)
Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Dopamina/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/química , Productos Biológicos/química , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Ratones , Transmisión Sináptica/efectos de los fármacos
11.
J Mol Med (Berl) ; 97(9): 1329-1344, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31302715

RESUMEN

Cell-to-cell transport of risk molecules is a highly anticipated pathogenic mechanism in the initiation and progression of various neurodegenerative diseases. Extracellular exosome-mediated neuron to neuron transport of α-synuclein (α-syn) is increasingly recognized as a potential etiologic mechanism in Parkinson's disease (PD). Exosomal inflammation has also been increasingly implicated in PD pathogenesis and could trigger, facilitate, or aggravate disease development. However, these mechanisms have not been verified systematically, especially in vivo. Since serum contains abundant exosomes, the correlation between serum exosomes and PD pathogenesis remains unknown. Here, we show that exosomes from PD patient serum contain more α-syn and inflammatory factors such as IL-1ß and TNF-α than neurological normal controls, eventually cause α-syn, ubiquitin, and P62 aggregation in recipient cells. More importantly, the intravenous or intrastriatal treatment of mice with exosomes from PD patient serum could evoke protein aggregation, trigger dopamine neuron degeneration, induce microglial activation, and cause apomorphine-coaxed rotation and movement defects. All these findings imply the exosome pathway as a new pathogenesis mechanism for PD, and therefore may present new targets for therapeutics. KEY MESSAGES: We have presented the evidence for a relationship between PD (Parkinson's disease) patients' serum exosomes and pathogenesis. PD patients' serum-derived exosomes could induce α-syn, ubiquitin and P62 aggregation in recipient cells. Intravenous or intrastriatal treatments of mice with PD exosomes were able to recapitulate the molecular, cellular and behavioral phenotypes of PD.


Asunto(s)
Exosomas/patología , Enfermedad de Parkinson/patología , Animales , Progresión de la Enfermedad , Exosomas/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Microglía/metabolismo , Microglía/patología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
12.
Front Neurol ; 10: 23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30740086

RESUMEN

Cluster headache is generally considered to be a primary headache; secondary cluster-like headache is quite rare, while cluster-like headache secondary to meningioma is even rarer. Here, we describe an unusual case with cluster-like headache 2.5 years after sphenoid ridge meningioma surgery. The cluster-like headache and meningioma were on the same side, and even at the same position. Furthermore, the cluster-like headache lasted for 6 months. In addition, the patient did not respond well to conventional treatments for cluster headache, such as oxygen inhalation, carbamazepine, and tramadol. Brain magnetic resonance imaging demonstrated a softening lesion, glial hyperplasia, and localized thickening and enhancement of the dura in the left frontal-temporal lobe. However, positron-emission computed tomography showed reduced metabolism in the left frontal-temporal lobe. Although the possibility of a primary headache cannot be completely eliminated, the association between cluster-like headache and probable tumor recurrence or postoperative changes should be considered.

13.
Front Aging Neurosci ; 10: 370, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524265

RESUMEN

Parkinson's disease (PD) is one of the synucleinopathies spectrum of disorders typified by the presence of intraneuronal protein inclusions. It is primarily composed of misfolded and aggregated forms of alpha-synuclein (α-syn), the toxicity of which has been attributed to the transition from an α-helical conformation to a ß-sheetrich structure that polymerizes to form toxic oligomers. This could spread and initiate the formation of "LB-like aggregates," by transcellular mechanisms with seeding and subsequent permissive templating. This hypothesis postulates that α-syn is a prion-like pathological agent and responsible for the progression of Parkinson's pathology. Moreover, the involvement of the inflammatory response in PD pathogenesis has been reported on the excessive microglial activation and production of pro-inflammatory cytokines. At last, we describe several treatment approaches that target the pathogenic α-syn protein, especially the oligomers, which are currently being tested in advanced animal experiments or are already in clinical trials. However, there are current challenges with therapies that target α-syn, for example, difficulties in identifying varying α-syn conformations within different individuals as well as both the cost and need of long-duration large trials.

14.
Front Aging Neurosci ; 10: 1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29403371

RESUMEN

Parkinson's Disease (PD) is currently considered a systemic neurodegenerative disease manifested with not only motor but also non-motor symptoms. In particular, weight loss and malnutrition, a set of frequently neglected non-motor symptoms, are indeed negatively associated with the life quality of PD patients. Moreover, comorbidity of weight loss and malnutrition may impact disease progression, giving rise to dyskinesia, cognitive decline and orthostatic hypotension, and even resulting in disability and mortality. Nevertheless, the underlying mechanism of weight loss and malnutrition in PD remains obscure and possibly involving multitudinous, exogenous or endogenous, factors. What is more, there still does not exist any weight loss and malnutrition appraision standards and management strategies. Given this, here in this review, we elaborate the weight loss and malnutrition study status in PD and summarize potential determinants and mechanisms as well. In conclusion, we present current knowledge and future prospects of weight loss and malnutrition in the context of PD, aiming to appeal clinicians and researchers to pay a closer attention to this phenomena and enable better management and therapeutic strategies in future clinical practice.

15.
Front Aging Neurosci ; 9: 95, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28446873

RESUMEN

Chorea-acanthocytosis (ChAc) is a rare autosomal recessive inherited syndrome characterized by hyperkinetic movements, seizures, cognitive impairment, neuropsychiatric symptoms, elevated serum biochemical indicators and acanthocytes detection in peripheral blood smear. Vacuolar protein sorting 13A (VPS13A) gene mutations have been proven to be genetically responsible for the pathogenesis of ChAc. Herein, based on the typical clinical symptoms and neuroimaging features, we present two suspected ChAc cases which are further genetically confirmed by four novel VPS13A gene mutations. Nevertheless, the sharp contrast between the population base and published ChAc reports implies that ChAc is considerably underdiagnosed in China. Therefore, we conclude several suggestive features and propose a diagnostic path of ChAc from a clinical, genetic and neuroimaging perspective, aiming to facilitate the diagnosis and management of ChAc in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA