Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 20(24): 4776-4782, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38842423

RESUMEN

Localized molecular self-assembly has been developed as an effective approach for the fabrication of spatially resolved supramolecular hydrogels, showing great potential for many high-tech applications. However, the fabrication of macroscopically structured supramolecular hydrogels through molecular self-assembly remains a challenge. Herein, we report on localized self-assembly of low molecular weight hydrogelators through a simple reaction-diffusion approach, giving rise to various macroscopically patterned supramolecular hydrogels. This is achieved on the basis of an acid-catalyzed hydrazone supramolecular hydrogelator system. The acid was pre-loaded in a polydimethylsiloxane (PDMS) substrate, generating a proton gradient in the vicinity of the PDMS surface after immersing the PDMS in the aqueous solution of the hydrogelator precursors. The acid dramatically accelerates the in situ formation and self-assembly of the hydrazone hydrogelators, leading to localized formation of supramolecular hydrogels. The growth rate of the supramolecular hydrogels can be easily tuned through controlling the concentrations of the hydrogelator precursors and HCl. Importantly, differently shaped supramolecular hydrogel objects can be obtained by simply changing the shapes of PDMS. This work suggests that reaction-diffusion-mediated localized hydrogelation can serve as an approach towards macroscopically structuralized supramolecular hydrogels, which may find potential applications ranging from tissue engineering to biosensors.

2.
Langmuir ; 39(15): 5454-5461, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37017211

RESUMEN

Gold nanoparticles (AuNPs) on carriers have received wide attention as catalysts as a result of their excellent stability and catalytic performance. Herein, we report the design and synthesis of hollow silica-supported gold nanocatalysts (SNPs@AuNPs) composed of highly dispersed AuNPs with approximately 4.30 nm using an in situ colloidal polyelectrolyte template strategy. The monodisperse polystyrene nanospheres accompanied by poly[(2-methacryloyloxyethyl)trimethylammonium chloride] brushes were first synthesized. Subsequently, the facile polymer-brush-engaged strategy for the synthesis of hollow SNPs@AuNPs involves in situ reduction of AuNPs, hydrolytic condensation of silica, and a chemical etching process. In combination with dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, X-ray powder diffraction, and Fourier transform infrared spectroscopy, the as-obtained polymer brushes were proven as effective versatile nanoreactors for the synthesis of AuNPs and silica nanoparticles without any catalysts. Benefiting from the structural advantages, the resultant hollow SNPs@AuNPs manifested superior catalytic activity and reusability for the reduction of p-nitrophenol by sodium borohydride in aqueous solution. With a delicate design, we believe that this synthetic strategy can be extended to fabricate multifunctional nanomaterials with diverse compositions, which would be of great interest in catalysis, energy, and many other important domains.

3.
Langmuir ; 39(41): 14718-14725, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37789564

RESUMEN

Degradable mesoporous organosilica nanoparticles (MONPs) are attracting significant attention in the area of designing smart drug carriers mainly due to their excellent stability and multiple functions. However, the efficient, controllable, and large-scale production of MONPs still faces huge challenges. Herein, a novel and facile continuous-flow nanoprecipitation strategy was reported to synthesize hollow MONPs with highly uniform and tailored properties. The synthesized hollow MONPs possessed a large surface area (SBET > 1070.1 m2 g-1), narrow size distribution, large hollow cavity, and thin shell. Interestingly, the incorporation of organic moieties into silica cross-linked networks led to the timely degradation of nanocarriers with the desired responsiveness. Moreover, the applicability of the as-obtained hollow MONPs has been demonstrated in the loading and pH-responsive release of thiamethoxam (THI). The resultant THI-loaded MONPs possessed long-term storage stability at a low temperature and showed release behaviors in response to a basic environment. Benefiting from the shielding property of MONPs, THI-loaded MONPs manifested superior stability against the photolysis as compared to that of the THI technical. This work provides a new consideration for promoting the advancement of nanotechnology in agricultural fields.

4.
Soft Matter ; 19(14): 2588-2593, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946875

RESUMEN

Zwitterionic polyelectrolyte nanogels are prospective nanocarriers due to their soft loading pocket and regulated charges. We here report a facile strategy, namely, electrostatic-templated polymerization (ETP) for synthesizing zwitterionic nanogels with controlled size and properties. Specifically, with anionic-neutral diblock polymers as the template, zwitterionic monomers such as carboxybetaine methacrylate (CBMA) or carboxybetaine acrylamide (CBAA) are polymerized together with a cross-linker at pH 2 where the monomers exhibit only positive charge due to the protonation of the carboxyl group. The obtained polyelectrolyte complex micelles dissociate upon introducing a concentrated salt. The subsequent separation yields the released template and zwitterionic nanogels with regulated size and swelling ability, achieved by tuning the salt concentration and cross-linker fraction during polymerization. The obtained PCBMA nanogels exhibit charges depending on the pH, which enables not only the selective loading of different dye molecules, but also encapsulation and intracellular delivery of cytochrome c protein. Our study develops a facile and robust way for fabricating zwitterionic nanogels and validates their potential applications as promising nanocarriers for load and delivery of functional charged cargos.

5.
Angew Chem Int Ed Engl ; 62(43): e202310162, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37671694

RESUMEN

Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2 CO3 ) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.

6.
Langmuir ; 38(17): 5275-5285, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142528

RESUMEN

Combining stimuli-responsive properties of gels with adhesive properties of mussels is highly interesting for a large field of applications as, e.g., in life science. Therefore, the present paper focuses on the copolymerization of poly(N-isopropylacrylamide) (PNIPAM) microgels with dopamine methacrylamide (DMA). A detailed understanding of reaction kinetics is crucial to figure out an optimized synthesis strategy for tailoring microgels with adhesive properties. The present study addresses the influence of relevant synthesis parameters as the injection time of DMA during the microgel synthesis and the overall reaction time of the microgel. Reaction kinetics were studied by mass spectrometry of time samples taken during the microgel synthesis. This allowed us to determine the monomer consumption of NIPAM, the cross-linker N,N'-methylenebisacrylamide (BIS), and DMA. A second-order reaction kinetics was found for DMA incorporation. The amount of DMA incorporated in the resulting microgel was successfully determined by a combination of UV-vis and NMR spectroscopy to level off limitations of both methods. The dependence of the hydrodynamic radius on temperature was determined by DLS measurements for the microgels. While an early injection of DMA stops the PNIPAM polymerization due to scavenging, it greatly enhances the reaction speed of DMA. The faster reaction of DMA and the incomplete NIPAM and BIS conversion also compensate for shorter reaction times with respect to the incorporated amount of DMA. On the contrary, a later injection of DMA leads to a full NIPAM monomer and BIS cross-linker consumption. An overall reaction time of 60 min ensures the DMA incorporation. Longer reaction times lead to clumping. First adhesion tests show an increased adhesion of P(NIPAM-co-DMA) microgels compared to pure PNIPAM microgels, when mechanical stress is applied.


Asunto(s)
Microgeles , Acrilamidas , Resinas Acrílicas , Adhesivos , Dopamina , Cinética , Polimerizacion
7.
Langmuir ; 38(42): 12915-12923, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36225101

RESUMEN

Distinct platinum (Pt) nanozymes as peroxidase mimics have received extensive interest owing to their outstanding catalytic activity, high environmental tolerance, lower consumption, and great potential in replacing natural enzymes. However, easy agglomeration of Pt nanoparticles (Pt NPs) resulting from the high surface free energy significantly decrease their peroxidase-like activity. Herein, spherical polyelectrolyte brush (SPB)-stabilized ultrasmall Pt NPs (SPB@Pt NPs) were prepared by a novel synthetic strategy where the SPB not only performed as a nanoreactor for the synthesis of ultrasmall Pt NPs but also greatly stabilized Pt NPs against aggregation. The well-defined SPB@Pt NP nanozymes exhibited outstanding peroxidase-like activity for the catalytic oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB and were then used to establish a colorimetric sensor for rapid detection of cysteine, giving a limit of detection of 0.11 µM. Moreover, the colorimetric detection system was demonstrated with outstanding performance in sensitive and selective detection of cysteine in the presence of several interference molecules. From these results, SPB@Pt NPs have been regarded as promising peroxidase mimics for a large number of applications such as in biosensing, biomedicine, the food industry, and environmental chemistry.


Asunto(s)
Nanopartículas del Metal , Platino (Metal) , Platino (Metal)/química , Polielectrolitos , Cisteína , Nanopartículas del Metal/química , Peróxido de Hidrógeno/química , Peroxidasas
8.
Langmuir ; 38(5): 1869-1876, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35080891

RESUMEN

Nanosized gold nanoparticles (AuNPs) are of great interest in areas such as catalysts or imaging but are easy to aggregate due to high surface activity. To stabilize AuNPs, two approaches were employed to immobilize AuNPs in spherical polymer brushes (SPBs), namely, the in situ preparation of AuNPs within the brush layer of SPBs and external addition of preprepared citrate-capped AuNPs. The distribution and stability of AuNPs in SPBs were studied by small-angle X-ray scattering (SAXS). SAXS results demonstrated that the in situ-prepared AuNPs were mainly located on the inner layer and their amount decreased from inside to outside. In the case of external addition of preprepared AuNPs, the cationic SPB showed obvious immobilization, while almost no AuNPs were immobilized in the anionic SPB. The stable immobilization of the AuNPs in SPBs was the result of multiple interactions including complexation and electrostatic interaction. SAXS was validated to be a distinctive and powerful characterization method to provide theoretical guidance for the stable immobilization of AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , Polímeros , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
9.
Macromol Rapid Commun ; 43(2): e2100594, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34699665

RESUMEN

Associations of amphiphiles assume their various morphologies according to the so-called packing parameter under thermodynamic control. However, one may raise the question of whether polymers can always relax fast enough to obey thermodynamic control, and how this may be checked. Here, a case of polyion complex (PIC) assemblies where the morphology appears to be subject to kinetic control is discussed. Poly (ethylene oxide)-b-(styrene sulfonate) block copolymers are combined with cationic PAMAM dendrimers of various generations (2-7). The PEO-PSS diblocks, and the corresponding PSS-PEO-PSS triblocks should have nearly identical packing parameters, but surprisingly creat different assemblies, namely core-shell micelles and vesicles, respectively. Moreover, the micelles are very stable against added salt, whereas the vesicles are not only much more sensitive to added salt, but also appear to exchange matter on relevant time scales. The small and largely quenched early-stage precursor complexes are responsible for the morphological and dynamic differences, implying that kinetic control may also be a way to obtain particles with well-defined and useful properties. The exciting new finding that triblocks produce more "active" vesicles will hopefully trigger the exploration of more pathways, and so learn how to tune PICsomes toward specific applications.


Asunto(s)
Dendrímeros , Cationes , Micelas , Polietilenglicoles , Polímeros
10.
Angew Chem Int Ed Engl ; 61(31): e202205481, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35638161

RESUMEN

Porous Organic Cages (POCs) with tunable tailoring chemistry properties and polymer-like processing conditions are of great potential for molecular selective membranes, but it remains challenging in the assembly of high crystalline POCs with regular nanochannels for effective molecular sieving. Here we report an electrostatic-induced crystal-rearrangement strategy for the design of a POC membrane with heterostructure. Due to electrostatic attraction, ionic liquid molecules induced cage molecules to rearrange into a sub-10 nm uniform and defect-free crystal layer, which displayed competitive CO2 separation performance. The optimized hetero-structured membrane exhibited an attractive CO2 /N2 separation selectivity of over 130, which was superior to the state-of-the-art membranes, accompanied with excellent long-term and thermal shock stability. This strategy provides a new inspiration for the preparation of crystal-rearranged membranes with regular channels for gas molecule sieving.

11.
Angew Chem Int Ed Engl ; 61(49): e202213333, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36219529

RESUMEN

Metal organic frameworks (MOF) are of great potential for molecular separation, but the ligand rotation flexibility makes them remain challenging in the construction of fixed nanochannels for precise sieving. Here we report an electrostatic-anchoring strategy to fix the rotation of 2-methylimidazole (2-MIM) ligand in ZIF-8. Electrostatic inducer trifluoroacetate anchored at and blocked the six-membered windows of ZIF-8, and meanwhile induced the positive 2-MIM rotated from initial 49° to 68°, thus opening neighbored four-membered windows with a constant size of 3.4 Å. The obtained ZIF-8 significantly enhanced the CO2 /N2 adsorption selectivity from 14.02 to 332.86. Further membrane-based separation exhibited an outstanding CO2 /N2 selectivity of up to 137 with a desired permeability of 286 Barrer, which exceeded the 2019 upper bound. This strategy provides a new inspiration for fixing the ligand rotation in soft MOF for desired precise molecular sieving.

12.
Langmuir ; 37(21): 6388-6396, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34008987

RESUMEN

By combining small-angle X-ray scattering, wide-angle X-ray scattering, and rheology, the effect of additional polyelectrolyte chains on interactions among spherical polyelectrolyte brushes (SPB) was systematically investigated both on microscopic and macroscopic levels. The negatively charged poly(acrylic acid) (PAA) chains and positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) chains were used as additional polyelectrolyte chains to investigate the local ordered structure and the "polyelectrolyte peak" among SPB. Interestingly, coacervation appeared in the SPB emulsion while introducing additional free polyelectrolyte chains. The addition of excess positively charged PDDA chains would lead to the transformation of the SPB emulsion from the coacervation to the aggregation, while it has not been observed in the case of PAA chains. Moreover, it was further confirmed that the specific local ordered structure was caused by the electrostatic interaction among polyelectrolyte chains of adjacent SPB. This work could enrich our understanding of polyelectrolyte assembly in concentrated SPB, thereby greatly broadening the application fields of SPB.

13.
Biomacromolecules ; 22(11): 4748-4757, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34628859

RESUMEN

Polyelectrolyte (PE) nanogels consisting of cross-linked PE networks integrate the advanced features of both nanogels and PEs. The soft environment and abundant intrinsic charges are of special interest for enzyme immobilization. However, the crucial factors that regulate enzyme encapsulation and activation remain obscure to date. Herein, we synthesized cationic poly (dimethyl aminoethyl methacrylate), PDMAEMA, nanogels with well-defined size and cross-link degrees and fully investigated the effects of different control factors on lipase immobilization. We demonstrate that the cationic PDMAEMA nanogels indeed enable efficient and safe loading of anionic lipase without disturbing their structures. Strong charge interaction achieved by tuning pH and larger particle size are favorable for lipase loading, while the enhanced enzymatic activity demands nanogels with smaller size and a moderate cross-link degree. As such, PDMAEMA nanogels with a hydrodynamic radius of 35 nm and 30% cross-linker fraction display the optimal catalytic efficiency, which is fourfold of that of free lipase. Moreover, the immobilization endows enhanced enzymatic activity in a broad scope of pH, ionic strength, and temperature, demonstrating effective protection and activation of lipase by the designed nanogels. Our study validates the crucial controls of the size and structure of PE nanogels on enzyme encapsulation and activation, and the revealed findings shall be helpful for designing functional PE nanogels and boosting their applications for enzyme immobilization.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Concentración de Iones de Hidrógeno , Nanogeles , Tamaño de la Partícula , Polielectrolitos
14.
Soft Matter ; 17(4): 887-892, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33237114

RESUMEN

Polyelectrolyte (PE) nanogels which combine features of nanogels and polyelectrolytes have attracted significant attention as outstanding nano-carriers. However, and crucially, any large-scale application of PE nanogels can only materialize when an efficient production method is available. We recently developed such a robust approach, namely Electrostatic Assembly Directed Polymerization (EADP), in which ionic monomers are polymerized together with cross-linker in the presence of a polyion-neutral diblock copolymer as template. Although EADP achieves efficient and scalable preparation of diverse PE nanogels, the essential factors for the optimal and controlled synthesis of nanogels have remained elusive. In this article, we investigate systematically the effects of pH, salt concentration, and cross-linker fractions on the formation and properties of a PDMAEMA nanogel prepared with PAA-b-PEO as the template. We find that the electrostatic interaction between the building blocks is crucial to obtain assembly-controlled polymerization, and we establish preferred pH, salt concentration and cross-linker fractions. The obtained PDMAEMA nanogel exhibits dual-responses to pH and salt, which allow manipulation of the positive charges of the nanogels for selective loading and controlled release of anionic substances; we demonstrate this with an anionic dye. The study presented here fully addresses the process parameters of EADP regarding optimal and controlled preparation of PE nanogels, which should allow exploration of their potential vis-a-vis a variety of applications.

15.
Macromol Rapid Commun ; 42(4): e2000635, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33368740

RESUMEN

Polyelectrolyte complex nanoparticles with integrated advances of coacervate complexes and nanomaterials have attracted considerable attention as soft templates and functional nano-carriers. Herein, a facile and robust strategy, namely electrostatic assembly directed polymerization (EADP), for efficient and scalable preparation of stable coacervate nanoparticles is presented. With homo-polyelectrolyte PAA (polyacrylic acid) as template and out of charge stoichiometry, the cationic monomers are polymerized together with cross-linkers, which creates coacervate nanoparticles featuring high stability against salt through one-pot synthesis. The particle size can be tuned by varying the cross-linker amount and salt concentrations during the polymerization and the composition of nanoparticles, as well as the corresponding properties can be regulated by combining different charged blocks from both strong and weak ionic monomers. The strategy can tolerate both high monomer concentrations and increased volume of up to l L, which is favorable for scaled-up preparations. Moreover, the coacervate nanoparticles can be freeze-dried to produce a product in powder form, which can be redispersed without any effect on the particle size and size distribution. Finally, the obtained nanoparticles loaded with enzyme and Au nanoparticles exhibit enhanced catalytic performance, demonstrating a great potential for exploring various applications of coacervate particles as soft and functional nano-carriers.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Polielectrolitos , Oro , Polimerizacion , Electricidad Estática
16.
Angew Chem Int Ed Engl ; 60(36): 19933-19941, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128294

RESUMEN

Fast water transport channels are crucial for water-related membrane separation processes. However, overcoming the trade-off between flux and selectivity is still a major challenge. To address this, we constructed spherical polyelectrolyte brush (SPB) structures with a highly hydrophilic polyelectrolyte brush layer, and introduced them into GO laminates, which increased both the flux and the separation factor. At 70 °C, the flux reached 5.23 kg m-2 h-1 , and the separation factor of butanol/water increased to ≈8000, which places it among the most selective separation membranes reported to date. Interestingly, further studies demonstrated that the enhancement of water transport was not only dependent on the hydrophilicity of the polyelectrolyte chains, but also influenced by their flexibility in the solvent. Quartz crystal microbalance with dissipation and molecular dynamics simulations revealed the structure-performance correlations between water molecule migration and the flexibility of the ordered polymer chains in the 2D confined space.

17.
Langmuir ; 36(12): 3104-3110, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32176504

RESUMEN

Interaction among concentrated spherical polyelectrolyte brushes (SPB) dispersions in water was systematically investigated by means of small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and rheological methods. SPB consist of a core of polystyrene (PS) and a poly(acrylic acid) (PAA) brush shell. The "polyelectrolyte peak" appeared in SAXS spectra and was observed in WAXS curves for the first time. The size of the polyelectrolyte peak and the rheological properties of SPB were found to be strongly effected by SPB concentration, pH, and ionic strength. Combined with SAXS, WAXS, and rheological results, it is confirmed that the polyelectrolyte peak is originated from local ordered structures of polyelectrolyte chains bridged by counterions in the overlapping area among SPB driven by electrostatic interactions.

18.
Soft Matter ; 16(41): 9406-9409, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33048095

RESUMEN

The present work shows how transient supramolecular hydrogels can be formed by catalytically controlled molecular self-assembly. Catalysis formation of molecular gelators leads the self-assembly along a kinetically favored pathway, resulting in transient hydrogels. This work demonstrates an effective approach towards pathway-dependent supramolecular materials.

19.
Soft Matter ; 16(36): 8394-8399, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32808002

RESUMEN

LAPONITE® sheets have been widely used for the preparation of tough nanocomposite hydrogels for enticing applications; however, their inferior dispersion in aqueous media resulting from electrostatic interactions between the nanosheets remarkably limits further improvements in the mechanical performances of the nanocomposite hydrogels. Here, we show a simple approach to dramatically accelerate the dispersion of LAPONITE® sheets in water, and in turn further improve the mechanical performances of the resulting nanocomposite hydrogels. Upon addition of poly(acrylic acid) (PAA), the electrostatic interactions between the LAPONITE® sheets were effectively reduced due to the adsorption of PAA onto the positively charged edges of the LAPONITE® sheets, thereby accelerating the dispersion of the LAPONITE® sheets in water. On this basis, a series of polyacrylamide (PAAm) hydrogels with a high content of LAPONITE® sheets was prepared, showing excellent tensile strength, stretchability, and anti-fatigue properties. This study will be beneficial for the preparation of LAPONITE®-based nanocomposite hydrogels bearing excellent mechanical properties for new applications.

20.
Angew Chem Int Ed Engl ; 59(33): 14076-14080, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32395894

RESUMEN

In cancer therapy, the selective targeting of cancer cells while avoiding side effects to normal cells is still full of challenges. Here, we developed dual-functionalized crescent microgels, which selectively captured and killed lung cancer cells in situ without killing other cells. Crescent microgels with the inner surface of the cavity functionalized with antibody and containing glucose oxidase (GOX) in the gel matrix have been produced in a microfluidic device. These microgels presented high affinity and good selectivity to lung cancer cells and retained them inside the cavities for extended periods of time. Exposing the crescent hydrogels to physiological concentrations of glucose leads to the production of a locally high concentration of H2 O2 inside the microgels' cavities, due to the catalytic action by GOX inside the gel matrix, which selectively killed 90 % cancer cells entrapped in the microgel cavities without killing the cells outside. Our strategy to create synergy between different functions by incorporating them in a single microgel presents a novel approach to therapeutic systems, with potentially broad applications in smart materials, bioengineering and biomedical fields.


Asunto(s)
Apoptosis , Microgeles , Neoplasias/patología , Glucosa Oxidasa/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA