Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(10): 4491-4510, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39038209

RESUMEN

The level of methylesterification alters the functional properties of pectin, which is believed to influence plant growth and development. However, the mechanisms that regulate demethylesterification remain largely unexplored. Pectin with a high degree of methylesterification is produced in the Golgi apparatus and then transferred to the primary cell wall where it is partially demethylesterified by pectin methylesterases (PMEs). Here, we show that in Arabidopsis (Arabidopsis thaliana) seed mucilage, pectin demethylesterification is negatively regulated by the transcription factor ZINC FINGER FAMILY PROTEIN5 (ZAT5). Plants carrying null mutations in ZAT5 had increased PME activity, decreased pectin methylesterification, and produced seeds with a thinner mucilage layer. We provide evidence that ZAT5 binds to a TGATCA motif and thereby negatively regulates methylesterification by reducing the expression of PME5, HIGHLY METHYL ESTERIFIED SEEDS (HMS)/PME6, PME12, and PME16. We also demonstrate that ZAT5 physically interacts with BEL1-LIKE HOMEODOMAIN2 (BLH2) and BLH4 transcription factors. BLH2 and BLH4 are known to modulate pectin demethylesterification by directly regulating PME58 expression. The ZAT5-BLH2/4 interaction provides a mechanism to control the degree of pectin methylesterification in seed coat mucilage by modifying each transcription factor's ability to regulate the expression of target genes encoding PMEs. Taken together, these findings reveal a transcriptional regulatory module comprising ZAT5, BLH2, and BLH4, that functions in modulating the demethylesterification of homogalacturonan in seed coat mucilage.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Pectinas , Mucílago de Planta , Semillas , Factores de Transcripción , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pectinas/metabolismo , Semillas/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mucílago de Planta/metabolismo , Esterificación , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Mutación
2.
J Exp Bot ; 75(8): 2351-2371, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205848

RESUMEN

Plant senescence, as a highly integrated developmental stage, involves functional degeneration and nutrient redistribution. NAM/ATAF1/CUC (NAC) transcription factors orchestrate various senescence-related signals and mediate the fine-tuning underlying plant senescence. Previous data revealed that knockout of either NtNAC028 or NtNAC080 leads to delayed leaf senescence in tobacco (Nicotiana tabacum), which implies that NtNAC028 and NtNAC080 play respective roles in the regulation of leaf senescence, although they share 91.87% identity with each other. However, the mechanism underlying NtNAC028- and NtNAC080-regulated leaf senescence remains obscure. Here, we determined that NtNAC028 and NtNAC080 activate a putative jasmonic acid (JA) biosynthetic gene, NtLOX3, and enhance the JA level in vivo. We found that NtNAC028 and NtNAC080 interact with each other and themselves through their NA-terminal region. Remarkably, only the dimerization between NtNAC028 and NtNAC080 stimulated the transcriptional activation activity, but not the DNA binding activity of this heterodimer on NtLOX3. Metabolome analysis indicated that overexpression of either NtNAC028 or NtNAC080 augments both biosynthesis and degradation of nicotine in the senescent stages. Thus, we conclude that NtNAC028 cooperates with NtNAC080 and forms a heterodimer to enhance NtLOX3 expression and JA biosynthesis to trigger the onset of leaf senescence and impact secondary metabolism in tobacco.


Asunto(s)
Ciclopentanos , Nicotiana , Oxilipinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nicotiana/genética , Senescencia de la Planta , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279327

RESUMEN

As the final stage of leaf development, leaf senescence is affected by a variety of internal and external signals including age and environmental stresses. Although significant progress has been made in elucidating the mechanisms of age-dependent leaf senescence, it is not clear how stress conditions induce a similar process. Here, we report the roles of a stress-responsive and senescence-induced gene, ERD7 (EARLY RESPONSIVE TO DEHYDRATION 7), in regulating both age-dependent and stress-induced leaf senescence in Arabidopsis. The results showed that the leaves of erd7 mutant exhibited a significant delay in both age-dependent and stress-induced senescence, while transgenic plants overexpressing the gene exhibited an obvious accelerated leaf senescence. Furthermore, based on the results of LC-MS/MS and PRM quantitative analyses, we selected two phosphorylation sites, Thr-225 and Ser-262, which have a higher abundance during senescence, and demonstrated that they play a key role in the function of ERD7 in regulating senescence. Transgenic plants overexpressing the phospho-mimetic mutant of the activation segment residues ERD7T225D and ERD7T262D exhibited a significantly early senescence, while the inactivation segment ERD7T225A and ERD7T262A displayed a delayed senescence. Moreover, we found that ERD7 regulates ROS accumulation by enhancing the expression of AtrbohD and AtrbohF, which is dependent on the critical residues, i.e., Thr-225 and Ser-262. Our findings suggest that ERD7 is a positive regulator of senescence, which might function as a crosstalk hub between age-dependent and stress-induced leaf senescence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Peróxido de Hidrógeno , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Fosforilación , Hojas de la Planta/metabolismo , Senescencia de la Planta , Plantas Modificadas Genéticamente/metabolismo , Espectrometría de Masas en Tándem
4.
J Exp Bot ; 74(17): 5140-5152, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37351601

RESUMEN

Receptor-like kinases (RLKs) are the most important class of cell surface receptors, and play crucial roles in plant development and stress responses. However, few studies have been reported about the biofunctions of RLKs in leaf senescence. Here, we characterized a novel Arabidopsis RLK-encoding gene, SENESCENCE-RELATED RECEPTOR KINASE 1 (SENRK1), which was significantly down-regulated during leaf senescence. Notably, the loss-of-function senrk1 mutants displayed an early leaf senescence phenotype, while overexpression of SENRK1 significantly delayed leaf senescence, indicating that SENRK1 negatively regulates age-dependent leaf senescence in Arabidopsis. Furthermore, the senescence-promoting transcription factor WRKY53 repressed the expression of SENRK1. While the wrky53 mutant showed a delayed senescence phenotype as previously reported, the wrky53 senrk1-1 double mutant exhibited precocious leaf senescence, suggesting that SENRK1 functions downstream of WRKY53 in regulating age-dependent leaf senescence in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Arabidopsis/metabolismo , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
J Sci Food Agric ; 103(13): 6540-6552, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37223951

RESUMEN

BACKGROUND: Volatile organic compounds are critical for food flavor and play important roles in plant-plant interactions and plants' communications with the environment. Tobacco is well-studied for secondary metabolism and most of the typical flavor substances in tobacco leaves are generated at the mature stage of leaf development. However, the changes in volatiles during leaf senescence are rarely studied. RESULTS: The volatile composition of tobacco leaves at different stages of senescence was characterized for the first time. Comparative volatile profiling of tobacco leaves at different stages was performed using solid-phase microextraction coupled with gas chromatography/mass spectrometry. In total, 45 volatile compounds were identified and quantified, including terpenoids, green leaf volatiles (GLVs), phenylpropanoids, Maillard reaction products, esters, and alkanes. Most of the volatile compounds showed differential accumulation during leaf senescence. Some terpenoids, including neophytadiene, ß-springene, and 6-methyl-5-hepten-2-one, increased significantly with the progress of leaf senescence. Hexanal and phenylacetaldehyde also showed increased accumulation in leaves during senescence. The results from gene expression profiling indicated that genes involved in metabolism of terpenoids, phenylpropanoids, and GLVs were differentially expressed during leaf yellowing. CONCLUSION: Dynamic changes in volatile compounds during tobacco leaf senescence are observed and the integration of gene-metabolites datasets offers important readouts for the genetic control of volatile production during the process of leaf senescence. © 2023 Society of Chemical Industry.


Asunto(s)
Nicotiana , Compuestos Orgánicos Volátiles , Nicotiana/genética , Hojas de la Planta/metabolismo , Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Terpenos , Expresión Génica
6.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063046

RESUMEN

Receptor-like kinases (RLKs) constitute a large group of cell surface receptors that play crucial roles in multiple biological processes. However, the function of most RLKs in plants has not been extensively explored, and much less for the class of cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs). In this study, analyses of developmental expression patterns uncovered a putative role of AtWAKL10 in modulating leaf senescence, which was further investigated at physiological and molecular levels. The expression level of AtWAKL10 increased with the developmental progression and was rapidly upregulated in senescing leaf tissues. The promoter of AtWAKL10 contains various defense and hormone responsive elements, and its expression could be significantly induced by exogenous ABA, JA and SA. Moreover, the loss-of-function atwakl10 mutant showed earlier senescence along the course of natural development and accelerated leaf senescence under darkness and hormonal stresses, while plants overexpressing AtWAKL10 showed an opposite trend. Additionally, some defense and senescence related WRKY transcription factors could bind to the promoter of AtWAKL10. In addition, deletion and overexpression of AtWAKL10 caused several specific transcriptional alterations, including genes involved in cell extension, cell wall modification, defense response and senescence related WRKYs, which may be implicated in regulatory mechanisms adopted by AtWAKL10 in controlling leaf senescence. Taken together, these results revealed that AtWAKL10 negatively regulated leaf senescence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Pared Celular/enzimología , Hojas de la Planta/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Pared Celular/efectos de los fármacos , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806406

RESUMEN

The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A,DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.


Asunto(s)
Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Catalasa/genética , Núcleo Celular/genética , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Peroxidasa/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Cloruro de Sodio/administración & dosificación , Cloruro de Sodio/farmacología , Solanum tuberosum/efectos de los fármacos , Superóxido Dismutasa/genética , Regulación hacia Arriba/genética
8.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081330

RESUMEN

Senescence is the final stage of leaf development which is accompanied by highly coordinated and complicated reprogramming of gene expression. Genetic manipulation of leaf senescence in major crops including wheat has been shown to be able to increase stress tolerance and grain yield. NAC(No apical meristem (NAM), ATAF1/2, and cup-shaped cotyledon (CUC)) transcription factors (TFs) play important roles in regulating gene expression changes during leaf senescence and in response to abiotic stresses. Here, we report the characterization of TaSNAC11-4B (Uniprot: A0A1D5XI64), a wheat NAC family member that acts as a functional homolog of AtNAP, a key regulator of leaf senescence in Arabidopsis. The expression of TaSNAC11-4B was up-regulated with the progression of leaf senescence, in response to abscisic acid (ABA) and drought treatments in wheat. Ectopic expression of TaSNAC11-4B in Arabidopsis promoted ROS accumulation and significantly accelerated age-dependent as well as drought- and ABA-induced leaf senescence. Results from transcriptional activity assays indicated that the TaSNAC11-4B protein displayed transcriptional activation activities that are dependent on its C terminus. Furthermore, qRT-PCR and dual-Luciferase assay results suggested that TaSNAC11-4B could positively regulate the expression of AtrbohD and AtrbohF, which encode catalytic subunits of the ROS-producing NADPH oxidase. Further analysis of TaSNAC11-4B in wheat senescence and the potential application of this gene in manipulating leaf senescence with the purpose of yield increase and stress tolerance is discussed.


Asunto(s)
Arabidopsis/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Triticum/genética , Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
9.
Yi Chuan ; 38(5): 444-60, 2016 05.
Artículo en Zh | MEDLINE | ID: mdl-27232493

RESUMEN

Members of the plant-specific WOX transcription factor family have been reported to play important roles in cell to cell communication as well as other physiological and developmental processes. In this study, ten members of the WOX transcription factor family were identified in Solanum lycopersicum with HMMER. Neighbor-joining phylogenetic tree, maximum-likelihood tree and Bayesian-inference tree were constructed and similar topologies were shown using the protein sequences of the homeodomain. Phylogenetic study revealed that the 25 WOX family members from Arabidopsis and tomato fall into three clades and nine subfamilies. The patterns of exon-intron structures and organization of conserved domains in Arabidopsis and tomato were consistent based on the phylogenetic results. Transcriptome analysis showed that the expression patterns of SlWOXs were different in different tissue types. Gene Ontology (GO) analysis suggested that, as transcription factors, the SlWOX family members could be involved in a number of biological processes including cell to cell communication and tissue development. Our results are useful for future studies on WOX family members in tomato and other plant species.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Filogenia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Ontología de Genes , Proteínas de Homeodominio/química , Solanum lycopersicum/química , Datos de Secuencia Molecular , Proteínas de Plantas/química
10.
J Exp Bot ; 65(14): 3901-13, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24935620

RESUMEN

Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research.


Asunto(s)
Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Biosíntesis de Proteínas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
11.
Biodes Res ; 6: 0047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206181

RESUMEN

Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.

12.
Sci Rep ; 14(1): 21556, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285198

RESUMEN

Leaf senescence represents the final stage of leaf development, involving transcription factors (TFs)-mediated genetic reprogramming events. The timing of crop leaf senescence has a major influence on the yield and quality of crop in agricultural production. As important regulator of plant growth, the significance of TFs in the regulation of leaf senescence have been highlighted in various plant species by recent advances in genetics. However, studies on underlying molecular mechanisms are still not adequately explained. In this study, for analyzing the regulation of TFs on senescence of tobacco leaves, we combined gene differential expression analysis with weighted gene co-expression network analysis (WGCNA) to analyze the time-series gene expression profiles in senescing tobacco leaf. Among 3517 TF genes expressed in tobacco leaves, we identified 21, 35, and 183 TFs that were associated with early, middle, and late stages of tobacco leaf senescence, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results reveal that these senescence response TFs are correlated with several biological pathways such as plant hormone signal transduction, ubiquitin mediated proteolysis and MAPK signaling pathway, indicating the roles of TFs in regulating leaf senescence. Our results provide implications for future studies of the potential regulatory mechanisms of TFs involved in senescence of tobacco leaves.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Nicotiana/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Senescencia de la Planta/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ontología de Genes , Transcriptoma
13.
Cell Biochem Biophys ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433598

RESUMEN

Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.

14.
Mol Plant ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39468793

RESUMEN

Leaf senescence plays a critical role in a plant's overall reproductive success due to its involvement in nutrient remobilization and allocation. However, our current understanding of the molecular mechanisms controlling leaf senescence remains limited. In this study, we demonstrate that the receptor-like kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) functions as a negative regulator of leaf senescence. We report that the SERINE-RICH ENDOGENOUS PEPTIDE 12, previously known to physically interact with MIK2, competes with SCOOP10 to control MIK2-dependent senescence regulatory mechanisms. We observed that increased expression of SCOOP10 or the application of exogenous SCOOP10 peptides accelerated leaf senescence in a MIK2-dependent manner. Conversely, SCOOP12 acted as a suppressor of MIK2-dependent senescence regulation. We also found that SCOOP12 enhanced while SCOOP10 diminished MIK2 phosphorylation. Thus, the SCOOP12-MIK2 module might function antagonistically on SCOOP10-MIK2 signaling at late senescing stages, allowing for fine-tuned modulation of the leaf senescence process. Our research sheds light on the complex mechanisms underlying leaf senescence and provides valuable insights into the interplay between receptors, peptides, and the regulation of plant senescence.

15.
Plants (Basel) ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256829

RESUMEN

Formins or formin homology 2 (FH2) proteins, evolutionarily conserved multi-domain proteins in eukaryotes, serve as pivotal actin organizers, orchestrating the structure and dynamics of the actin cytoskeleton. However, a comprehensive investigation into the formin family and their plausible involvement in abiotic stress remains undocumented in soybean (Glycine max). In the current study, 34 soybean FH (GmFH)family members were discerned, their genomic distribution spanning the twenty chromosomes in a non-uniform pattern. Evolutionary analysis of the FH gene family across plant species delineated five discernible groups (Group I to V) and displayed a closer evolutionary relationship within Glycine soja, Glycine max, and Arabidopsis thaliana. Analysis of the gene structure of GmFH unveiled variable sequence lengths and substantial diversity in conserved motifs. Structural prediction in the promoter regions of GmFH gene suggested a large set of cis-acting elements associated with hormone signaling, plant growth and development, and stress responses. The investigation of the syntenic relationship revealed a greater convergence of GmFH genes with dicots, indicating a close evolutionary affinity. Transcriptome data unveiled distinctive expression patterns of several GmFH genes across diverse plant tissues and developmental stages, underscoring a spatiotemporal regulatory framework governing the transcriptional dynamics of GmFH gene. Gene expression and qRT-PCR analysis identified many GmFH genes with a dynamic pattern in response to abiotic stresses, revealing their potential roles in regulating plant stress adaptation. Additionally, protein interaction analysis highlighted an intricate web of interactions among diverse GmFH proteins. These findings collectively underscore a novel biological function of GmFH proteins in facilitating stress adaptation in soybeans.

16.
Plant Physiol Biochem ; 209: 108525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518396

RESUMEN

Members of the CEP (C-terminally Encoded Peptide) gene family have been shown to be involved in various developmental processes and stress responses in plants. In order to understand the roles of CEP peptides in stress response, a comprehensive bioinformatics approach was employed to identify NtCEP genes in tobacco (Nicotiana tabacum L.) and to analyze their potential roles in stress responses. Totally 21 NtCEP proteins were identified and categorized into two subgroups based on their CEP domains. Expression changes of the NtCEP genes in response to various abiotic stresses were analyzed via qRT-PCR and the results showed that a number of NtCEPs were significant up-regulated under drought, salinity, or temperature stress conditions. Furthermore, application of synthesized peptides derived from NtCEP5, NtCEP13, NtCEP14, and NtCEP17 enhanced plant tolerance to different salt stress treatments. NtCEP5, NtCEP9 and NtCEP14, and NtCEP17 peptides were able to promote osmotic tolerance of tobacco plants. The results from this study suggest that NtCEP peptides may serve as important signaling molecules in tobacco's response to abiotic stresses.


Asunto(s)
Nicotiana , Proteínas de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Estrés Salino , Péptidos/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Filogenia
17.
Plant Mol Biol ; 82(6): 519-28, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23065109

RESUMEN

The application of systems biology approaches has greatly facilitated the process of deciphering the molecular mechanisms underlying leaf senescence. Analyses of the leaf senescence transcriptome have identified some of the major biochemical events during senescence including protein degradation and nutrient remobilization. Proteomic studies have confirmed these findings and have suggested up-regulated energy metabolism during leaf senescence which might be important for cell viability maintenance. As a critical part of systems biology, studies involving transcription regulation networking and senescence-inducing signaling have deepened our understanding on the molecular regulation of leaf senescence. The important next steps towards a systems biological understanding of leaf senescence will be discussed.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Biología de Sistemas , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genética
18.
Mol Hortic ; 3(1): 17, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37789434

RESUMEN

Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.

19.
Plant Physiol ; 156(3): 1612-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21543729

RESUMEN

Whole plant senescence of monocarpic plants consists of three major processes: arrest of shoot apical meristem, organ senescence, and permanent suppression of axillary buds. At early stages of development, axillary buds are inhibited by shoot apex-produced auxin, a mechanism known as apical dominance. How the buds are suppressed as an essential part of whole plant senescence, especially when the shoot apexes are senescent, is not clear. Here, we report an AtMYB2-regulated post apical dominance mechanism by which Arabidopsis (Arabidopsis thaliana) inhibits the outgrowth of axillary buds as part of the whole plant senescence program. AtMYB2 is expressed in the compressed basal internode region of Arabidopsis at late stages of development to suppress the production of cytokinins, the group of hormones that are required for axillary bud outgrowth. atmyb2 T-DNA insertion lines have enhanced expression of cytokinin-synthesizing isopentenyltransferases genes, contain higher levels of cytokinins, and display a bushy phenotype at late stages of development. As a result of the continuous generation of new shoots, atmyb2 plants have a prolonged life span. The AtMYB2 promoter-directed cytokinin oxidase 1 gene in the T-DNA insertion lines reduces the endogenous cytokinin levels and restores the bushy phenotype to the wild type.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Citocininas/metabolismo , Transactivadores/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Modelos Biológicos , Mutagénesis Insercional/genética , Oxidorreductasas/metabolismo , Fenotipo , Tallos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/genética
20.
Plant Physiol ; 157(1): 476-84, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21750229

RESUMEN

Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry.


Asunto(s)
Interacciones Huésped-Parásitos , Imitación Molecular , Nematodos/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA