Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8014): 1075-1081, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811711

RESUMEN

Climate warming induces shifts from snow to rain in cold regions1, altering snowpack dynamics with consequent impacts on streamflow that raise challenges to many aspects of ecosystem services2-4. A straightforward conceptual model states that as the fraction of precipitation falling as snow (snowfall fraction) declines, less solid water is stored over the winter and both snowmelt and streamflow shift earlier in season. Yet the responses of streamflow patterns to shifts in snowfall fraction remain uncertain5-9. Here we show that as snowfall fraction declines, the timing of the centre of streamflow mass may be advanced or delayed. Our results, based on analysis of 1950-2020 streamflow measurements across 3,049 snow-affected catchments over the Northern Hemisphere, show that mean snowfall fraction modulates the seasonal response to reductions in snowfall fraction. Specifically, temporal changes in streamflow timing with declining snowfall fraction reveal a gradient from earlier streamflow in snow-rich catchments to delayed streamflow in less snowy catchments. Furthermore, interannual variability of streamflow timing and seasonal variation increase as snowfall fraction decreases across both space and time. Our findings revise the 'less snow equals earlier streamflow' heuristic and instead point towards a complex evolution of seasonal streamflow regimes in a snow-dwindling world.


Asunto(s)
Calentamiento Global , Lluvia , Estaciones del Año , Nieve , Ecosistema , Ríos , Factores de Tiempo , Movimientos del Agua , Calentamiento Global/estadística & datos numéricos , Análisis Espacio-Temporal
2.
Plant J ; 118(5): 1486-1499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457289

RESUMEN

The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.


Asunto(s)
Flores , Histonas , Intrones , Proteínas de Plantas , Rosa , Rosa/genética , Rosa/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Histonas/metabolismo , Histonas/genética , Intrones/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Frío , Metilación , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Lisina/metabolismo
3.
Inorg Chem ; 63(2): 1225-1235, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163760

RESUMEN

A multifunctional single-atom nanozyme, denoted as 3D Ni,N-codoped porous carbon (Ni-NPC), was devised that exhibits remarkable adsorption capabilities and a repertoire of enzyme mimetic functions (oxidase- and peroxidase-like). These attributes stem from the distinctive mesoporous thin-shell structure and well-dispersed Ni sites. The efficient adsorption capacity of Ni-NPC was assessed with respect to three carbamate pesticides (CMPs): metolcarb, carbaryl, and isoprocarb. Moreover, a colorimetric detection method for CMP was established based on its robust peroxidase-like catalytic activity and sequential catalytic interactions with acetylcholinesterase. Furthermore, a portable colorimetric sensor based on a hydrogel sphere integrated with a smartphone platform was devised. This sensor enables rapid, on-site, and quantitative assessment of CMP, boasting an extraordinarily low detection limit of 1.5 ng mL-1. Notably, this sensor was successfully applied to the analysis of CMP levels in lake water and vegetable samples (pakchoi and rape), propelling the progress of real-time detection technologies in food and environment monitoring.


Asunto(s)
Plaguicidas , Teléfono Inteligente , Acetilcolinesterasa , Plaguicidas/análisis , Carbamatos/química , Peroxidasa , Peroxidasas , Colorimetría
4.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731449

RESUMEN

Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment. The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN. In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms. The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway. Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG. In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.


Asunto(s)
Analgésicos , Cannabis , Neuralgia , Paclitaxel , Extractos Vegetales , Animales , Cannabis/química , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Analgésicos/farmacología , Analgésicos/química , Paclitaxel/efectos adversos , Masculino , Metabolómica , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Cannabinoides/farmacología , Multiómica
5.
Plant Dis ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324202

RESUMEN

Alfalfa (Medicago sativa L.) is perennial leguminous forage, which is cultivated throughout the world due to its high yield, high quality, satisfactory palatability, and wide adaptability. With the increase of planting area in China, root diseases caused by Fusarium spp., Sclerotium rolfsii, Phytophthora spp. (Yang et al. 2022), and new pathogens have been found that reduce the yield and quality of alfalfa and cause economic losses (Li at al. 2019). In 2021, an alfalfa disease occurred under conditions of high temperature and high humidity at the Jiaozhou Experimental Base of Qingdao Agricultural University (Jiaozhou Modern Agricultural Science and Technology Demonstration Park, 36.33°N 120.40°E, Qingdao, Shandong, China), and about 2 ha of alfalfa were infected. The disease affected up to 35% of the plants and caused grass spots. Infected plants developed black-brown lesions with irregular shapes on roots with yellowing of the foliage; the leaves of the whole plant turned yellow. In the late stage of the disease, defoliation occurred and the plants stopped growing, wilted and died. Ten infected plants with typical symptom were collected for isolation and identification of pathogen. The infected roots were cut into 3-5 mm2 sections and then soaked in 75% ethanol for 30 s, followed by a 3-minute immersion in 2% sodium hypochlorite for surface sterilization. Next, the tissues were rinsed in sterile water five times and then placed on potato dextrose agar (PDA) medium. After three subcultures and subsequent single spore isolation, one representative strain named as DC1 was isolated from the infected roots. Based on morphological observation, the colony of DC1 was flat, granular, and powdery in appearance. Four days after inoculation on PDA medium, the size of the colony were 2.1-2.6 cm. After 8 to 20 days, the colonies were initially white and gradually change a light pink to peach color. The conidia are two-celled (Hamid et al. 2014), elliptic to pear-shaped, colorless or translucent, smooth to slightly rough with thick walls. The size of conidia ranged from 11.3 to 23.5 µm long × 6.1 to 12.7 µm wide (n =30). For the identification, the rDNA--ITS gene of the fungus was amplified using the primers ITS1/ITS4 (White et al.1990), and the EF1α gene was amplified using primers EF1-983F/EF1-2218R (Rehner and Buckley 2005). Then the PCR amplicons were cloned into the pCE2 TA/Blunt-Zero vector. The results of the rDNA-ITS (OM049197.1, 515 bp) and EF1α (OM069381.1, 926 bp) sequences were deposited in GenBank. DNA analysis showed that the two sequences were 100% similar to the rDNA-ITS sequence (MN882763.1) and EF1α sequence (DQ676610.1) of Trichothecium roseum, respectively. A pathogenicity test was done by placing one piece (0.5 cm in diameter) of fungal culture (PDA plug) 1cm below the crown of 40-day-old healthy alfalfa (cv. Zhongmu No.3) plants, 3 replicates and 20 plants in each replicate. PDA plug without the pathogen were used for control. All plants were cultivated in a growth chamber at 25±1°C with a light cycle of 15 h (90% relative humidity). After 18 days, the roots of inoculated plants had dark brown lesions and the leaves of their plants turn yellow, while those control plants had no symptoms. To fulfilling Koch's postulates, the same pathogen was re-isolated from necrotic root tissue of inoculated plants and confirmed by morphology and the rDNA-ITS and EF1-α sequences. Based on disease symptoms, morphological characteristics DNA sequences and pathogenicity, the pathogen of alfalfa disease in Jiaozhou Experimental Base of Qingdao Agricultural University was identified as T. roseum. To our knowledge, this is first report of T. roseum causing alfalfa root rot. The newly emerging disease may pose threat to alfalfa production of central and southern China in future.

6.
Genet Mol Biol ; 45(2): e20210378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35377386

RESUMEN

Atrial fibrillation (AF) represents the most common type of sustained cardiac arrhythmia in humans and confers a significantly increased risk for thromboembolic stroke, congestive heart failure and premature death. Aggregating evidence emphasizes the predominant genetic defects underpinning AF and an increasing number of deleterious variations in more than 50 genes have been involved in the pathogenesis of AF. Nevertheless, the genetic basis underlying AF remains incompletely understood. In the current research, by whole-exome sequencing and Sanger sequencing analysis in a family with autosomal-dominant AF and congenital patent ductus arteriosus (PDA), a novel heterozygous variation in the PRRX1 gene encoding a homeobox transcription factor critical for cardiovascular development, NM_022716.4:c.373G>T;p.(Glu125*), was identified to be in co-segregation with AF and PDA in the whole family. The truncating variation was not detected in 306 unrelated healthy individuals employed as controls. Quantitative biological measurements with a reporter gene analysis system revealed that the Glu125*-mutant PRRX1 protein failed to transactivate its downstream target genes SHOX2 and ISL1, two genes that have been causally linked to AF. Conclusively, the present study firstly links PRRX1 loss-of-function variation to AF and PDA, suggesting that AF and PDA share a common abnormal developmental basis in a proportion of cases.

7.
Clin Chem Lab Med ; 59(5): 955-963, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33554560

RESUMEN

OBJECTIVES: Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS: Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS: A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS: The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Dilatada/genética , Análisis Mutacional de ADN , Heterocigoto , Humanos , Proteínas con Homeodominio LIM , Factores de Transcripción MEF2/genética , Proteínas Musculares , Linaje , Factores de Transcripción
8.
Nanomedicine ; 33: 102348, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33321215

RESUMEN

Atherosclerosis can lead to most cardiovascular diseases. Although some biomimetic nanomaterials coated by macrophage membranes have been reported in previous studies of atherosclerosis, to our knowledge, no studies regarding the detection of early lesions of atherosclerosis (foam cells) using such a strategy have yet been reported. In the present study, Fe3O4 biomimetic nanoparticles coated with a macrophage membrane (Fe3O4@M) were prepared to investigate the imaging effect on the early lesions of atherosclerosis (foam cells). The results showed that the Fe3O4@M particles are spheres with average diameters of approximately 300 nm. T1 and T2 relaxation values showed that the ratio of r2 to r1 was 26.09. The protein content accounted for approximately 27% of the total weight in Fe3O4@M, and Fe3O4@M nanoparticles exhibited high biosafety. Further testing showed that Fe3O4@M effectively targets early atherosclerotic lesions by the specific recognition of integrin α4ß1 to VCAM-1. Taken together, Fe3O4@M is a promising contrast agent for the diagnosis of early stage atherosclerosis.


Asunto(s)
Materiales Biomiméticos/química , Medios de Contraste/química , Nanopartículas de Magnetita/química , Animales , Aterosclerosis , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Macrófagos/química , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Ratones , Células RAW 264.7 , Propiedades de Superficie , Molécula 1 de Adhesión Celular Vascular/metabolismo
9.
Int Heart J ; 61(4): 761-768, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32641638

RESUMEN

Congenital heart defect (CHD) represents the most common birth deformity, afflicting 1% of all births worldwide, and accounts for substantial morbidity and mortality. Increasing evidence highlights the pivotal roles of genetic etiologies in the pathogenesis of CHD, and pathogenic mutations in multiple genes, including TBX5 encoding a cardiac core transcription factor key to cardiovascular morphogenesis, have been involved in CHD. However, due to pronounced genetic heterogeneity of CHD, the genetic determinants underlying CHD in most cases remain obscure. In this investigation, by sequencing analysis of the coding exons and flanking introns of the TBX5 gene in 198 unrelated patients affected with CHD, a novel heterozygous mutation, NM_000192.3: c.692C>T; p. (Pro231Leu), was identified in an index patient with familial double outlet right ventricle (DORV), ventricular septal defect (VSD), and atrioventricular block (AVB). Genetic analysis of the proband's pedigree showed that the mutation co-segregated with the diseases. The missense mutation, which altered the amino acid conserved evolutionarily, was absent from 266 unrelated healthy subjects. Functional analyses with a dual-luciferase reporter assay system unveiled that the Pro231Leu-mutant TBX5 was associated with significantly reduced transcriptional activity on its target genes MYH6 and NPPA. Furthermore, the mutation disrupted the synergistic transactivation between TBX5 and NKX2-5 as well as GATA4, two other transcription factors causally linked to CHD. This study firstly links TBX5 loss-of-function mutation to familial DORV, VSD, and AVB, which provides novel insight into the mechanism underpinning CHD and AVB, suggesting potential implications for genetic evaluation and individualized treatment of patients affected by CHD and AVB.


Asunto(s)
Bloqueo Atrioventricular/genética , Cardiopatías Congénitas/genética , Proteínas de Dominio T Box/genética , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Bovinos , Niño , Preescolar , Perros , Femenino , Humanos , Lactante , Masculino , Ratones , Persona de Mediana Edad , Mutación Missense , Ratas , Adulto Joven
10.
AAPS PharmSciTech ; 20(2): 42, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610415

RESUMEN

Vaccines are considered the most economical and effective preventive measure against most deadly infectious diseases. Vaccines help protect around three million lives every year, but hundreds of thousands of lives are lost due to the instability of vaccines. This review discusses the various types of instability observed, while manufacturing, storing, and distributing vaccines. It describes the specific stability problems associated with each type of vaccine. This review also discusses the various measures adopted to overcome these instability problems. Vaccines are classified based on their components, and this review discusses how these preventive measures relate to each type of vaccine. This review also includes certain case studies that illustrate various approaches to improve vaccine stability. Last, this review provides insight on prospective methods for developing more stable vaccines.


Asunto(s)
Vacunas/química , Estabilidad de Medicamentos , Humanos
11.
Blood ; 125(19): 2974-84, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25778530

RESUMEN

Isocitrate dehydrogenase 1 mutation (IDH1-R132H) was recently identified in acute myeloid leukemia with normal cytogenetics. The mutant enzyme is thought to convert α-ketoglutarate to the pathogenic 2-hydroxyglutarate (2-HG) that affects DNA methylation via inhibition of ten-eleven translocation 2. However, the role of wild-type IDH1 in normal hematopoiesis and its relevance to acute myeloid leukemia is unknown. Here we showed that zebrafish idh1 (zidh1) knockdown by morpholino and targeted mutagenesis by transcription activator-like effector nuclease might induce blockade in myeloid differentiation, as evident by an increase in pu.1 and decrease in mpo, l-plastin, and mpeg1 expression, and significantly reduce definitive hematopoiesis. Morpholino knockdown of zidh2 also induced a blockade in myeloid differentiation but definitive hematopoiesis was not affected. The hematopoietic phenotype of zidh1 knockdown was not rescuable by zidh2 messenger RNA, suggesting nonredundant functions. Overexpression of human IDH1-R132H or its zebrafish ortholog resulted in 2-HG elevation and expansion of myelopoiesis in zebrafish embryos. A human IDH1-R132H-specific inhibitor (AGI-5198) significantly ameliorated both hematopoietic and 2-HG responses in human but not zebrafish IDH1 mutant expression. The results provided important insights to the role of zidh1 in myelopoiesis and definitive hematopoiesis and of IDH1-R132H in leukemogenesis.


Asunto(s)
Embrión no Mamífero/metabolismo , Hematopoyesis/fisiología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación/genética , Mielopoyesis/fisiología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Bencenoacetamidas/farmacología , Western Blotting , Células Cultivadas , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Cromatografía de Gases y Espectrometría de Masas , Glutaratos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Imidazoles/farmacología , Técnicas para Inmunoenzimas , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/genética , Pez Cebra/metabolismo
12.
Pediatr Cardiol ; 38(3): 547-557, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27942761

RESUMEN

As the most prevalent form of birth defect in humans worldwide, congenital heart disease (CHD) is responsible for substantial morbidity and is still the leading cause of birth defect-related demises. Increasing evidence demonstrates that genetic defects play an important role in the pathogenesis of CHD, and mutations in multiple genes, especially in those coding for cardiac core transcription factors, have been causally linked to various CHDs. Nevertheless, CHD is a genetically heterogeneous disease and the genetic determinants underpinning CHD in an overwhelming majority of patients remain elusive. In the current study, genomic DNA was extracted from venous blood samples of 165 unrelated patients with CHD, and the coding exons and splicing junction sites of the HAND1 gene, which encodes a basic helix-loop-helix transcription factor essential for cardiovascular development, were sequenced. As a result, a novel heterozygous mutation, p.R118C, was identified in a patient with tetralogy of Fallot (TOF). The missense mutation, which was absent in 600 referential chromosomes, altered the amino acid that was completely conserved evolutionarily. Biological assays with a dual-luciferase reporter assay system revealed that the R118C-mutant HAND1 protein had significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation of a downstream target gene between HAND1 and GATA4, another cardiac core transcription factor associated with TOF. To our knowledge, this is the first report on the association of a HAND1 loss-of-function mutation with enhanced susceptibility to TOF in humans. The findings provide novel insight into the molecular etiology underlying TOF, suggesting potential implications for the improved prophylactic and therapeutic strategies for TOF.


Asunto(s)
Pueblo Asiatico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Mutación Missense , Tetralogía de Fallot/genética , Secuencia de Aminoácidos , Preescolar , China , Estudios de Cohortes , Análisis Mutacional de ADN , Exones , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Linaje
13.
Int Heart J ; 58(4): 521-529, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28690296

RESUMEN

Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is a leading cause of congestive heart failure and the most common indication for heart transplantation. Recently, NKX2-5 mutations have been involved in the pathogenesis of familial DCM. However, the prevalence and spectrum of NKX2-5 mutations associated with sporadic DCM remain to be evaluated. In this study, the coding regions and flanking introns of the NKX2-5 gene, which encodes a cardiac transcription factor pivotal for cardiac development and structural remodeling, were sequenced in 210 unrelated patients with sporadic adult-onset DCM. A total of 300 unrelated healthy individuals used as controls were also genotyped for NKX2-5. The functional effect of the mutant NKX2-5 was investigated using a dual-luciferase reporter assay system. As a result, two novel heterozygous NKX2-5 mutations, p.R139W and p.E167X, were identified in 2 unrelated patients with sporadic adult-onset DCM, with a mutational prevalence of approximately 0.95%. The mutations were absent in 600 referential chromosomes and the altered amino acids were completely conserved evolutionarily across species. Functional assays revealed that the NKX2-5 mutants were associated with significantly reduced transcriptional activity. Furthermore, the mutations abrogated the synergistic activation between NKX2-5 and GATA4 as well as TBX20, two other cardiac key transcription factors that have been causally linked to adult-onset DCM. This study is the first to associate NKX2-5 loss-of-function mutations with enhanced susceptibility to sporadic DCM, which provides novel insight into the molecular etiology underpinning DCM, and suggests the potential implications for the genetic counseling and personalized treatment of the DCM patients.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN/genética , Proteína Homeótica Nkx-2.5/genética , Mutación , Edad de Inicio , Cardiomiopatía Dilatada/epidemiología , Cardiomiopatía Dilatada/metabolismo , China/epidemiología , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Genes Reporteros/genética , Genotipo , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Prevalencia
14.
J Am Chem Soc ; 137(21): 6837-43, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25988218

RESUMEN

Superoxide anion radical (O2(•-)) is undoubtedly the most important primary reactive oxygen species (ROS) found in cells, whose formation and fate are intertwined with diverse physiological and pathological processes. Here we report a highly sensitive and selective O2(•-) detecting strategy involving O2(•-) cleavage of an aryl trifluoromethanesulfonate group to yield a free phenol. We have synthesized three new O2(•-) fluorescent probes (HKSOX-1, HKSOX-1r for cellular retention, and HKSOX-1m for mitochondria-targeting) which exhibit excellent selectivity and sensitivity toward O2(•-) over a broad range of pH, strong oxidants, and abundant reductants found in cells. In confocal imaging, flow cytometry, and 96-well microplate assay, HKSOX-1r has been robustly applied to detect O2(•-) in multiple cellular models, such as inflammation and mitochondrial stress. Additionally, our probes can be efficiently applied to visualize O2(•-) in intact live zebrafish embryos. These probes open up exciting opportunities for unmasking the roles of O2(•-) in health and disease.


Asunto(s)
Alcanosulfonatos/química , Fluoresceínas/química , Colorantes Fluorescentes/química , Macrófagos/química , Superóxidos/análisis , Pez Cebra/embriología , Alcanosulfonatos/síntesis química , Animales , Línea Celular , Supervivencia Celular , Fluoresceínas/síntesis química , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/síntesis química , Células HCT116 , Humanos , Concentración de Iones de Hidrógeno , Macrófagos/citología , Ratones , Estructura Molecular
15.
Virulence ; 15(1): 2362748, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38860453

RESUMEN

Rad6 functions as a ubiquitin-conjugating protein that regulates cellular processes in many fungal species. However, its role in filamentous entomopathogenic fungi remains poorly understood. This study characterizes Rad6 in Beauveria bassiana, a filamentous fungus widely employed as a critical fungicide globally. The results demonstrate a significant association between Rad6 and conidial properties, heat shock response, and UV-B tolerance. Concurrently, the mutant strain exhibited heightened sensitivity to oxidative stress, cell wall interfering agents, DNA damage stress, and prolonged heat shock. Furthermore, the absence of Rad6 significantly extended the median lethal time (LT50) of Galleria mellonella infected by B. bassiana. This delay could be attributed to reduced Pr1 proteases and extracellular cuticle-degrading enzymes, diminished dimorphic transition rates, and dysregulated antioxidant enzymes. Additionally, the absence of Rad6 had a more pronounced effect on genetic information processing, metabolism, and cellular processes under normal conditions. However, its impact was limited to metabolism in oxidative stress. This study offers a comprehensive understanding of the pivotal roles of Rad6 in conidial and hyphal stress tolerance, environmental adaptation, and the pathogenesis of Beauveria bassiana.


Asunto(s)
Beauveria , Proteínas Fúngicas , Estrés Oxidativo , Esporas Fúngicas , Beauveria/patogenicidad , Beauveria/genética , Beauveria/fisiología , Animales , Esporas Fúngicas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia , Estrés Fisiológico , Mariposas Nocturnas/microbiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Respuesta al Choque Térmico , Hifa/crecimiento & desarrollo
16.
IEEE Trans Vis Comput Graph ; 30(1): 529-539, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874725

RESUMEN

Books act as a crucial carrier of cultural dissemination in ancient times. This work involves joint efforts between visualization and humanities researchers, aiming at building a holistic view of the cultural exchange and integration between China and Japan brought about by the overseas circulation of Chinese classics. Book circulation data consist of uncertain spatiotemporal trajectories, with multiple dimensions, and movement across hierarchical spaces forms a compound network. LiberRoad visualizes the circulation of books collected in the Imperial Household Agency of Japan, and can be generalized to other book movement data. The LiberRoad system enables a smooth transition between three views (Location Graph, map, and timeline) according to the desired perspectives (spatial or temporal), as well as flexible filtering and selection. The Location Graph is a novel uncertainty-aware visualization method that employs improved circle packing to represent spatial hierarchy. The map view intuitively shows the overall circulation by clustering and allows zooming into single book trajectory with lenses magnifying local movements. The timeline view ranks dynamically in response to user interaction to facilitate the discovery of temporal events. The evaluation and feedback from the expert users demonstrate that LiberRoad is helpful in revealing movement patterns and comparing circulation characteristics of different times and spaces.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38829765

RESUMEN

Generative text-to-image models, which allow users to create appealing images through a text prompt, have seen a dramatic increase in popularity in recent years. However, most users have a limited understanding of how such models work and often rely on trial and error strategies to achieve satisfactory results. The prompt history contains a wealth of information that could provide users with insights into what has been explored and how the prompt changes impact the output image, yet little research attention has been paid to the visual analysis of such process to support users. We propose the Image Variant Graph, a novel visual representation designed to support comparing prompt-image pairs and exploring the editing history. The Image Variant Graph models prompt differences as edges between corresponding images and presents the distances between images through projection. Based on the graph, we developed the PrompTHis system through co-design with artists. Based on the review and analysis of the prompting history, users can better understand the impact of prompt changes and have a more effective control of image generation. A quantitative user study and qualitative interviews demonstrate that PrompTHis can help users review the prompt history, make sense of the model, and plan their creative process.

18.
STAR Protoc ; 5(2): 102953, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38489270

RESUMEN

High mortality of ovarian cancer (OC) is primarily attributed to the lack of effective early detection methods. Uterine fluid, pooling molecules from neighboring ovaries, presents an organ-specific advantage over conventional blood samples. Here, we present a protocol for identifying metabolite biomarkers in uterine fluid for early OC detection. We describe steps for uterine fluid collection from patients, metabolite extraction, metabolomics experiments, and candidate metabolite biomarker screening. This standardized workflow holds the potential to achieve early OC diagnosis in clinical practice. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Asunto(s)
Biomarcadores de Tumor , Líquidos Corporales , Detección Precoz del Cáncer , Metabolómica , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/diagnóstico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Metabolómica/métodos , Detección Precoz del Cáncer/métodos , Líquidos Corporales/metabolismo , Líquidos Corporales/química , Útero/metabolismo
19.
Eur J Med Res ; 29(1): 167, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475829

RESUMEN

BACKGROUND: Recent studies about the effect of gonadotropin (Gn) dose on the clinical outcomes of IVF are still controversial, and no studies have analyzed the relationship between Gn dose and embryo quality. Since AMH is a strong predictor of oocyte quality, we aim to evaluate the relationship between total Gn dose and embryo quality and clinical outcomes at different AMH levels in IVF cycles. METHODS: A total of 12,588 patients were enrolled in the retrospective study. The included cycles were categorized by serum AMH levels (AMH ≤ 1 ng/ml, 1 ng/ml < AMH ≤ 3 ng/ml, 3 ng/ml < AMH ≤ 5 ng/ml, AMH > 5 ng/ml), total Gn dosage (< 1875 IU, 1875-3750 IU and ≥ 3750 IU) and female age (< 35 years and 35-42 years). The embryo quality and clinical outcomes were the measure outcomes. RESULTS: The top-day3 embryos rate decreased with the increase of total Gn dose in nearly all age and AMH subgroups, but this trend was not obvious in the AMH > 5 ng/ml group and AMH ≤ 1 ng/ml group. The blastocyst formation rate and high-quality blastulation rate had a negative relationship with Gn does for women aged < 35 years in the AMH ≤ 5 ng/ml groups, except for the AMH > 5 ng/ml group (P < 0.001). However, when women were 35-42 years old, regardless of AMH levels, the blastocyst formation rate and high-quality blastulation rate decreased as Gn dose increased. Clinical outcomes (implantation rate, clinical pregnancy rate and live birth rate) decreased with the increase of Gn dose in all ages and AMH stratifications. CONCLUSIONS: The total dose of Gn may have different effects on embryo quality at different serum AMH levels, and the negative effects of total dose of Gn on clinical outcomes may be realized by impairing both embryo quality and endometrium.


Asunto(s)
Transferencia de Embrión , Fertilización In Vitro , Gonadotropinas , Adulto , Femenino , Humanos , Embarazo , Gonadotropinas/administración & dosificación , Índice de Embarazo , Estudios Retrospectivos
20.
J Diabetes ; 16(5): e13556, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664878

RESUMEN

AIMS: The adverse effects of sedentary behavior on obesity and chronic diseases are well established. However, the prevalence of sedentary behavior has increased, with only a minority of individuals meeting the recommended physical activity guidelines. This study aimed to investigate whether habitual leg shaking, a behavior traditionally considered unfavorable, could serve as an effective strategy to improve energy metabolism. MATERIALS AND METHODS: A randomized crossover study was conducted, involving 15 participants (mean [SD] age, 25.4 [3.6]; mean [SD] body mass index, 22 [3]; 7 women [46.7%]). The study design involved a randomized sequence of sitting and leg shaking conditions, with each condition lasting for 20 min. Energy expenditure, respiratory rate, oxygen saturation, and other relevant variables were measured during each condition. RESULTS: Compared to sitting, leg shaking significantly increased total energy expenditure [1.088 kj/min, 95% confidence interval, 0.69-1.487 kj/min], primarily through elevated carbohydrate oxidation. The average metabolic equivalent during leg shaking exhibited a significant increase from 1.5 to 1.8. Leg shaking also raised respiratory rate, minute ventilation, and blood oxygen saturation levels, while having no obvious impact on heart rate or blood pressure. Electromyography data confirmed predominant activation of lower leg muscles and without increased muscle fatigue. Intriguingly, a significant correlation was observed between the increased energy expenditure and both the frequency of leg shaking and the muscle mass of the legs. CONCLUSIONS: Our study provides evidence that habitual leg shaking can boost overall energy expenditure by approximately 16.3%. This simple and feasible approach offers a convenient way to enhance physical activity levels.


Asunto(s)
Estudios Cruzados , Metabolismo Energético , Pierna , Humanos , Femenino , Adulto , Masculino , Adulto Joven , Conducta Sedentaria , Frecuencia Respiratoria , Frecuencia Cardíaca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA