Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Soft Matter ; 15(36): 7137-7144, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31435627

RESUMEN

Instabilities in a thin sheet are ubiquitous and can be induced by various stimuli, such as a uniaxial force, liquid-vapor surface tension, etc. This paper investigates voltage-induced instabilities in a membrane of a dielectric elastomer. Instabilities including buckling, wrinkling, and crumpling are observed in the experiments. The prestretches of the dielectric elastomer are found to play a significant role in determining its instability mode. When the prestretch is small, intermediate, or large, the membrane may undergo buckling, wrinkling, or crumpling, respectively. Finite element analysis is conducted to study these instability modes, and the simulations are well consistent with the experimental observations. We hope that this investigation of mechanical and physical properties of dielectric elastomers can enhance their extensive and significant applications in soft devices and soft robots.

2.
Soft Matter ; 13(16): 2942-2951, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28357441

RESUMEN

A membrane of a dielectric elastomer may undergo electromechanical phase transition from the flat to wrinkled state, when the applied voltage reaches a critical value. The wrinkled region is observed to expand at the expense of the flat region during the phase transition. In this paper, we report on a dynamic pattern of wrinkles in a circular membrane of a dielectric elastomer. During phase transition, both the flat and wrinkled regions move interchangeably in the membrane. The radial prestretch is found to significantly affect electromechanical phase transition. For example, a membrane with a small prestretch can exhibit a dynamic pattern of wrinkles, which is essentially related to snap-through instability. However, a membrane with a large prestretch undergoes continuous phase transition, without exhibiting a dynamic pattern. An analytical model is developed to interpret these experimental phenomena. Finite element simulations are performed to predict the wrinkle morphology, especially the coexistence of flat and wrinkled regions. Both the theoretical calculations and finite element simulations are qualitatively consistent with the experiments. Additionally, we observe another type of electromechanical behavior involving a dynamic pattern of wrinkles with different wavelengths. The membrane first undergoes continuous transition from the flat to wrinkled state, followed by discontinuous transition from one wrinkled state to another. These results may inspire new applications for dielectric elastomers such as on-demand patterning of wrinkles for microfluidics and stretchable electronics.

3.
Med Eng Phys ; 118: 104018, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37536839

RESUMEN

OBJECTIVE: This study aimed to develop a new technique to map the strain field for persons with lower-limb amputations to use for the design of comfortable prostheses. METHODS: Using a DSLR camera with stenciled 2D markers, we demonstrated a technique to measure skin strain around the residual limb of persons with lower limb amputations. We used open-source software programs to reconstruct a series of cloud points derived from the pictures of the marked residual limb into 3D models, then calculated the minimum, maximum, and non-extension lines from directional strain fields. RESULTS: A DSLR camera was successful in capturing 2D markers. The maximum mean principal strain was 68% ± 14%, observed around the patella. The minimum compressive mean principal strain of -31% ± 4% was observed posteriorly in the popliteal region of the knee. Although lines of non-extension (LoNE) appear separate in different participants, they are anatomically located in regions that could be generalized for the design of prostheses. CONCLUSIONS: Marker locations extracted from the video of different poses can be compared to calculate strains from which the position of LoNE can be generated. The use of LoNE could be valuable in reducing discomfort at the socket interface and informing future socket design.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Humanos , Rodilla/cirugía , Piel , Presión , Diseño de Prótesis , Muñones de Amputación
4.
Adv Healthc Mater ; 12(21): e2202987, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36977464

RESUMEN

E-textiles have recently gained significant traction in the development of soft wearables for healthcare applications. However, there have been limited works on wearable e-textiles with embedded stretchable circuits. Here, stretchable conductive knits with tuneable macroscopic electrical and mechanical properties are developed by varying the yarn combination and the arrangement of stitch types at the meso-scale. Highly extensible piezoresistive strain sensors are designed (>120% strain) with high sensitivity (gauge factor 8.47) and durability (>100,000 cycles), interconnects (>140% strain) and resistors (>250% strain), optimally arranged to form a highly stretchable sensing circuit. The wearable is knitted with a computer numerical control (CNC) knitting machine that offers a cost effective and scalable fabrication method with minimal post-processing. The real-time data from the wearable is transmitted wirelessly using a custom designed circuit board. In this work, an all knitted and fully integrated soft wearable is demonstrated for wireless and continuous real-time sensing of knee joint motion of multiple subjects performing various activities of daily living.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Actividades Cotidianas , Textiles , Conductividad Eléctrica , Movimiento (Física)
5.
Artículo en Inglés | MEDLINE | ID: mdl-38082836

RESUMEN

The use of e-textiles in wearable sensor design has recently received much interest in many applications, such as robotics, rehabilitation, personal wellness, and sports. Particularly in the rehabilitation domain, it has provided a potential alternative tool for telerehabilitation. In this paper, we designed and evaluated a knitted knee brace with interconnects, resistors, and sensors for real-time kinematic data acquisition. The real-time data acquisition is transmitted using a printed circuit board (PCB) connected to the knee brace through snap pins. The knitted knee brace was tested on three male and one female participant , aged between 30 and 50 years old. All participants were instructed to perform a walking activity at 1.5 km/h for a duration of 10 seconds on the Advanced Mechanical Technology, Inc (AMTI) treadmill over two sessions. The results demonstrated that the fully integrated knitted wearable knee brace could monitor and track human joint locomotion in real time with a standard deviation of 0.39V and 0.41V , respectively, for these two sessions. However, double peak signals were noticeable from the knitted knee brace at a mean of 80.54% during the gait cycles across the four subjects; this observation could be due to the coupled motion along the transverse and coronal planes during the activity.


Asunto(s)
Tirantes , Articulación de la Rodilla , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Marcha , Caminata , Locomoción
6.
Soft Robot ; 9(4): 705-712, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34388046

RESUMEN

Tunable lens technology inspired by the human eye has opened a new paradigm of smart optical devices for a variety of applications due to unique characteristics such as lightweight, low cost, and facile fabrication over conventional lens assemblies. The fast-growing demands for tunable optical lenses in consumer electronics, medical diagnostics, and optical communications require the lens to have a large focal length modulation range and high compactness. Herein, for the first time, an all-solid tunable soft lens driven by highly transparent dielectric elastomer actuators (DEAs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and waterborne polyurethane (PEDOT:PSS/WPU) transparent electrodes is developed. The deformation of the tunable soft lens is achieved by the actuation of DEAs, mimicking the change of the surface profile of the human eye to achieve remarkable focal length variations. Upon electrical activation, this tunable soft lens can vary its original focal length by 209%, which is one of the highest among current tunable soft lenses and far beyond that of the human eye. This study demonstrates that transparent DEAs are capable of achieving focus-variation functions, and potentially useful in artificial robotic vision, visual prostheses, and adjustable glasses, which will induce significant effects on the future development of tunable optics.


Asunto(s)
Cristalino , Lentes , Dispositivos Ópticos , Robótica , Elastómeros , Humanos , Cristalino/fisiología
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7348-7351, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892795

RESUMEN

E-textiles have shown great potential for development of soft sensors in applications such as rehabilitation and soft robotics. However, existing approaches require the textile sensors to be attached externally onto a substrate or the garment surface. This paper seeks to address the issue by embedding the sensor directly into the wearable using a computer numerical control (CNC) knitting machine. First, we proposed a design of the wearable knee brace. Next, we demonstrated the capability to knit a sensor with the stretchable surrounding fabric. Subsequently, we characterized the sensor and developed a model for the sensor's electromechanical property. Lastly, the fully knitted knee brace with embedded sensor is tested, by performing three different activities: a simple Flexion-extension exercise, walking, and jogging activity with a single test subject. Results show that the knitted knee brace sensor can track the subject's knee motion well, with a Spearman's coefficient (rs) value of 0.87 when compared to the reference standard.


Asunto(s)
Textiles , Dispositivos Electrónicos Vestibles , Movimiento (Física) , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA