Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 112(6): 1525-1542, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36353749

RESUMEN

Linking genotype with phenotype is a fundamental goal in biology and requires robust data for both. Recent advances in plant-genome sequencing have expedited comparisons among multiple-related individuals. The abundance of structural genomic within-species variation that has been discovered indicates that a single reference genome cannot represent the complete sequence diversity of a species, leading to the expansion of the pan-genome concept. For high-resolution forward genetics, this unprecedented access to genomic variation should be paralleled and integrated with phenotypic characterization of genetic diversity. We developed a multi-parental framework for trait dissection in melon (Cucumis melo), leveraging a novel pan-genome constructed for this highly variable cucurbit crop. A core subset of 25 diverse founders (MelonCore25), consisting of 24 accessions from the two widely cultivated subspecies of C. melo, encompassing 12 horticultural groups, and 1 feral accession was sequenced using a combination of short- and long-read technologies, and their genomes were assembled de novo. The construction of this melon pan-genome exposed substantial variation in genome size and structure, including detection of ~300 000 structural variants and ~9 million SNPs. A half-diallel derived set of 300 F2 populations, representing all possible MelonCore25 parental combinations, was constructed as a framework for trait dissection through integration with the pan-genome. We demonstrate the potential of this unified framework for genetic analysis of various melon traits, including rind color intensity and pattern, fruit sugar content, and resistance to fungal diseases. We anticipate that utilization of this integrated resource will enhance genetic dissection of important traits and accelerate melon breeding.


Asunto(s)
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucurbitaceae/genética , Fitomejoramiento , Mapeo Cromosómico , Fenotipo
2.
Plant Dis ; 106(1): 15-25, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34649461

RESUMEN

Macrophomina phaseolina is a soil-borne fungal pathogen infecting many important crop plants. The fungus, which can survive on crop debris for a long period of time, causes charcoal rot disease by secreting a diverse array of cell-wall degrading enzymes and toxins. M. phaseolina thrives during periods of high temperatures and arid conditions, as typically occur in Israel and other countries with a Mediterranean climate. Crop losses due to charcoal rot can be expected to increase and spread to other countries in a warming global climate. Management of this pathogen is challenging, requiring an array of approaches for the various crop hosts. Approaches that have had some success in Israel include grafting of melons and watermelons on resistant squash rootstocks and soil application of fungicide to reduce disease incidence in melons, fumigation and alterations in planting date and mulching of strawberries, and alteration in irrigation regime of cotton. Elsewhere, these approaches, as well as soil amendments and addition of organisms that are antagonistic to M. phaseolina, have had success in some crop situations. Management through host resistance would be the most sustainable approach, but it requires identifying a resistant germplasm for each crop and introgressing the resistance into the leading cultivars. Resistance to charcoal rot is under complex genetic control in most crops, posing a great challenge for its introgression into elite germplasm. Moreover, fast, reliable methods of screening for resistance would have to be developed for each crop. The toothpick-inoculation method used by us holds great promise for selecting resistant germplasm for melons and possibly for sesame, but other methodologies have to be devised for each individual crop.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Ascomicetos/genética , Manejo de la Enfermedad , Israel
3.
J Exp Bot ; 72(18): 6205-6218, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33993257

RESUMEN

Heterosis, the superiority of hybrids over their parents, is a major genetic force associated with plant fitness and crop yield enhancement. We investigated root-mediated yield heterosis in melons (Cucumis melo) by characterizing a common variety grafted onto 190 hybrid rootstocks, resulting from crossing 20 diverse inbreds in a diallel-mating scheme. Hybrid rootstocks improved yield by more than 40% compared with their parents, and the best hybrid yield outperformed the reference commercial variety by 65% under both optimal and minimal irrigation treatments. To characterize the genetics of underground heterosis we conducted whole genome re-sequencing of the 20 founder lines, and showed that parental genetic distance was no predictor for the level of heterosis. Through inference of the 190 hybrid genotypes from their parental genomes, followed by genome-wide association analysis, we mapped multiple quantitative trait loci for root-mediated yield. Yield enhancement of the four best-performing hybrid rootstocks was validated in multiple experiments with four different scion varieties. Our grafting approach is complementary to the common roots genetic approach that focuses mainly on variation in root system architecture, and is a step towards discovery of candidate genes involved in root function and yield enhancement.


Asunto(s)
Cucurbitaceae , Vigor Híbrido , Estudio de Asociación del Genoma Completo , Genotipo , Vigor Híbrido/genética , Sitios de Carácter Cuantitativo/genética
4.
Theor Appl Genet ; 133(6): 1927-1945, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32100072

RESUMEN

Melon is an important crop that exhibits broad variation for fruit morphology traits that are the substrate for genetic mapping efforts. In the post-genomic era, the link between genetic maps and physical genome assemblies is key for leveraging QTL mapping results for gene cloning and breeding purposes. Here, using a population of 164 melon recombinant inbred lines (RILs) that were subjected to genotyping-by-sequencing, we constructed and compared high-density sequence- and linkage-based recombination maps that were aligned to the reference melon genome. These analyses reveal the genome-wide variation in recombination frequency and highlight regions of disrupted collinearity between our population and the reference genome. The population was phenotyped over 3 years for fruit size and shape as well as rind netting. Four QTLs were detected for fruit size, and they act in an additive manner, while significant epistatic interaction was found between two neutral loci for this trait. Fruit shape displayed transgressive segregation that was explained by the action of four QTLs, contributed by alleles from both parents. The complexity of rind netting was demonstrated on a collection of 177 diverse accessions. Further dissection of netting in our RILs population, which is derived from a cross of smooth and densely netted parents, confirmed the intricacy of this trait and the involvement of major locus and several other interacting QTLs. A major netting QTL on chromosome 2 co-localized with results from two additional populations, paving the way for future study toward identification of a causative gene for this trait.


Asunto(s)
Mapeo Cromosómico , Cucumis melo/genética , Frutas/genética , Frutas/fisiología , Genes de Plantas , Ligamiento Genético , Alelos , Cruzamientos Genéticos , Cucumis melo/fisiología , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo
5.
Plant J ; 94(1): 169-191, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385635

RESUMEN

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae/genética , Frutas/genética , Sitios de Carácter Cuantitativo/genética , Cucurbitaceae/metabolismo , Calidad de los Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN
6.
Plant Biotechnol J ; 17(12): 2246-2258, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31022325

RESUMEN

Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high-quality genome sequence of watermelon cultivar 'Charleston Gray', a principal American dessert watermelon, to complement the existing reference genome from '97103', an East Asian cultivar. Comparative analyses between genomes of 'Charleston Gray' and '97103' revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping-by-sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high-quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the 'Charleston Gray' genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and C. mucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and C. mucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome-wide association studies. The high-quality 'Charleston Gray' genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.


Asunto(s)
Citrullus/genética , Genoma de Planta , Mapeo Cromosómico , Resistencia a la Enfermedad , Frutas , Estudios de Asociación Genética , Genómica , Polimorfismo de Nucleótido Simple
7.
J Exp Bot ; 70(15): 3781-3794, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175368

RESUMEN

Color and pigment contents are important aspects of fruit quality and consumer acceptance of cucurbit crops. Here, we describe the independent mapping and cloning of a common causative APRR2 gene regulating pigment accumulation in melon and watermelon. We initially show that the APRR2 transcription factor is causative for the qualitative difference between dark and light green rind in both crops. Further analyses establish the link between sequence or expression level variations in the CmAPRR2 gene and pigment content in the rind and flesh of mature melon fruits. A genome-wide association study (GWAS) of young fruit rind color in a panel composed of 177 diverse melon accessions did not result in any significant association, leading to an earlier assumption that multiple genes are involved in shaping the overall phenotypic variation in this trait. Through resequencing of 25 representative accessions and allelism tests between light rind accessions, we show that multiple independent single nucleotide polymorphisms in the CmAPRR2 gene are causative of the light rind phenotype. The multi-haplotypic nature of this gene explains the lack of detection power obtained through genotyping by sequencing-based GWAS and confirms the pivotal role of this gene in shaping fruit color variation in melon. This study demonstrates the power of combining bi- and multi-allelic designs with deep sequencing, to resolve lack of power due to high haplotypic diversity and low allele frequencies. Due to its central role and broad effect on pigment accumulation in fruits, the APRR2 gene is an attractive target for carotenoid bio-fortification of cucurbit crops.


Asunto(s)
Citrullus/metabolismo , Cucurbitaceae/metabolismo , Frutas/metabolismo , Genoma de Planta/genética , Alelos , Carotenoides/metabolismo , Clorofila/metabolismo , Mapeo Cromosómico , Citrullus/genética , Cucurbitaceae/genética , Frutas/genética , Genes de Plantas/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Pigmentación/genética , Pigmentación/fisiología , Sitios de Carácter Cuantitativo/genética , RNA-Seq
8.
J Multidiscip Healthc ; 16: 3533-3544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024120

RESUMEN

Purpose: The purpose of this study was to examine ethnic disparities in the utilization of digital healthcare services (DHS) in Israel and explore the characteristics and factors influencing DHS use among the Arab minority and Jewish majority populations. Methods: A cross-sectional correlational design was employed to collect data from 606 Israeli participants, 445 Jews, and 161 Arabs. Participants completed a digital questionnaire that assessed DHS utilization, digital health literacy, attitudes towards DHS, and demographic variables. Results: The findings reveal significant disparities in DHS utilization and attitudes between these ethnic groups, with Jewish participants demonstrating higher rates of utilization and positive attitudes toward DHS. The study also explores the predictive role of digital health literacy and attitudes in DHS use while considering ethnicity as a potential moderator. Significant predicting factors related to DHS utilization among Jews include positive attitudes and high health literacy. Among the Arabs, only attitudes towards DHS significantly predict the extent of DHS use. Digital health literacy affects the extent of use through attitudes at the two groups of the moderator significantly, but it is stronger among the Arab group. Conclusion: To improve healthcare outcomes and reduce disparities, efforts should focus on ensuring equitable access to DHS for the Arab minority population. Targeted interventions, including digital literacy education, removing technology access barriers, offering services in Arabic, and collaborating with community organizations, can help bridge the gap and promote equal utilization of DHS.

9.
J Health Organ Manag ; ahead-of-print(ahead-of-print)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002882

RESUMEN

PURPOSE: Providing health care services requires collaboration between several occupations. This study aimed to reveal how three occupational groups (nurses, physicians, and administrators) perceive human resources management practices (HRMP) and whether these practices are differently associated with trust in the clinic manager. DESIGN/METHODOLOGY/APPROACH: The study included 290 employees from 29 primary care clinics, all affiliated with a health care organisation that operates in the public sector. Self-reporting questionnaires measured participants' perceptions of six HRMP across occupations and their association with trust in the clinic manager. Variation between occupational groups was analysed through one-way analysis of variance (for groups' perceptions of HRMP and trust in manager) and t-tests (for the association between perceived HRMP and trust in manager). FINDINGS: The results indicate some differences in perceived HRMP and trust across groups. Also, some differences were found across occupations regarding the relationship between HRMP and trust in the clinic manager: Nurses' perceptions significantly differed from those of physicians and administrators, yet there was no significant difference between the two latter groups. PRACTICAL IMPLICATIONS: Health care organisations should expand their human resources architecture and customise their HRMP for each occupational group based on that group's perceptions of the workplace. This can nurture trust in managers and create a climate for trust as a mechanism that encourages employees from distinct occupational groups to work together for the benefit of their clinic, organisation, and patients. ORIGINALITY/VALUE: This study contributes to the discussion about the contextualisation of HRMP, providing insights regarding perceptions of HRMP as an enabler of an organisation's strategy.


Asunto(s)
Confianza , Lugar de Trabajo , Atención a la Salud , Humanos , Encuestas y Cuestionarios , Recursos Humanos
10.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043206

RESUMEN

Earliness and ripening behavior are important attributes of fruits on and off the vine, and affect quality and preference of both growers and consumers. Fruit ripening is a complex physiological process that involves metabolic shifts affecting fruit color, firmness, and aroma production. Melon is a promising model crop for the study of fruit ripening, as the full spectrum of climacteric behavior is represented across the natural variation. Using Recombinant Inbred Lines (RILs) population derived from the parental lines "Dulce" (reticulatus, climacteric) and "Tam Dew" (inodorus, non-climacteric) that vary in earliness and ripening traits, we mapped QTLs for ethylene emission, fruit firmness and days to flowering and maturity. To further annotate the main QTL intervals and identify candidate genes, we used Oxford Nanopore long-read sequencing in combination with Illumina short-read resequencing, to assemble the parental genomes de-novo. In addition to 2.5 million genome-wide SNPs and short InDels detected between the parents, we also highlight here the structural variation between these lines and the reference melon genome. Through systematic multi-layered prioritization process, we identified 18 potential polymorphisms in candidate genes within multi-trait QTLs. The associations of selected SNPs with earliness and ripening traits were further validated across a panel of 177 diverse melon accessions and across a diallel population of 190 F1 hybrids derived from a core subset of 20 diverse parents. The combination of advanced genomic tools with diverse germplasm and targeted mapping populations is demonstrated as a way to leverage forward genetics strategies to dissect complex horticulturally important traits.

11.
Plant Physiol ; 154(4): 1753-65, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20971858

RESUMEN

Understanding the genetic basis of nitrogen and carbon metabolism will accelerate the development of plant varieties with high yield and improved nitrogen use efficiency. A robotized platform was used to measure the activities of 10 enzymes from carbon and nitrogen metabolism in the maize (Zea mays) intermated B73 × Mo17 mapping population, which provides almost a 4-fold increase in genetic map distance compared with conventional mapping populations. Seedling/juvenile biomass was included to identify its genetic factors and relationships with enzyme activities. All 10 enzymes showed heritable variation in activity. There were strong positive correlations between activities of different enzymes, indicating that they are coregulated. Negative correlations were detected between biomass and the activity of six enzymes. In total, 73 significant quantitative trait loci (QTL) were found that influence the activity of these 10 enzymes and eight QTL that influence biomass. While some QTL were shared by different enzymes or biomass, we critically evaluated the probability that this may be fortuitous. All enzyme activity QTL were in trans to the known genomic locations of structural genes, except for single cis-QTL for nitrate reductase, Glu dehydrogenase, and shikimate dehydrogenase; the low frequency and low additive magnitude compared with trans-QTL indicate that cis-regulation is relatively unimportant versus trans-regulation. Two-gene epistatic interactions were identified for eight enzymes and for biomass, with three epistatic QTL being shared by two other traits; however, epistasis explained on average only 2.8% of the genetic variance. Overall, this study identifies more QTL at a higher resolution than previous studies of genetic variation in metabolism.


Asunto(s)
Biomasa , Nitrógeno/metabolismo , Sitios de Carácter Cuantitativo , Zea mays/genética , Zea mays/enzimología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
12.
Theor Appl Genet ; 122(2): 405-20, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20872209

RESUMEN

Plant yield is the integrated outcome of processes taking place above and below ground. To explore genetic, environmental and developmental aspects of fruit yield in tomato, we phenotyped an introgression line (IL) population derived from a cross between the cultivated tomato (Solanum lycopersicum) and a wild species (Solanum pennellii). Both homozygous and heterozygous ILs were grown in irrigated and non-irrigated fields and evaluated for six yield components. Thirteen lines displayed transgressive segregation that increased agronomic yield consistently over 2 years and defined at least 11 independent yield-improving QTL. To determine if these QTL were expressed in the shoots or the roots of the plants, we conducted field trials of reciprocally grafted ILs; out of 13 lines with an effect on yield, 10 QTL were active in the shoot and only IL8-3 showed a consistent root effect. To further examine this unusual case, we evaluated the metabolic profiles of fruits from both the homo- and heterozygous lines for IL8-3 and compared these to those obtained from the fruit of their equivalent genotypes in the root effect population. We observed that several of these metabolic QTL, like the yield QTL, were root determined; however, further studies will be required to delineate the exact mechanism mediating this effect in this specific line. The results presented here suggest that genetic variation for root traits, in comparison to that present in the shoot, represents only a minor component in the determination of tomato fruit yield.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Cromosomas de las Plantas , Productos Agrícolas/metabolismo , Sequías , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta , Genotipo , Hibridación Genética , Israel , Solanum lycopersicum/metabolismo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Sitios de Carácter Cuantitativo
13.
Theor Appl Genet ; 121(8): 1587-99, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20680612

RESUMEN

Harvest index, defined as the ratio of reproductive yield to total plant biomass, and early ripening are traits with important agronomic value in processing tomatoes. The Solanum pennellii introgression-line (IL) population shows variation for harvest index and earliness. Most of the QTL mapped for these traits display negative agronomic effects; however, hi2-1 is a unique QTL displaying improved harvest index and earliness. This introgression was tested over several years and under different genetic backgrounds. Thirty-one nearly isogenic sub-lines segregating for the 18 cM TG33-TG276 interval were used for fine mapping of this multi-phenotypic QTL. Based on this analysis the phenotypic effects for plant weight, Brix, total yield and earliness were co-mapped to the same region. In a different mapping experiment these sub-lines were tested as heterozygotes in order to map the harvest index QTL which were only expressed in the heterozygous state. These QTL mapped to the same candidate region, suggesting that hi2-1 is either a single gene with pleiotropic effects or represents linked genes independently affecting these traits. Metabolite profiling of the fruit pericarp revealed that a number of metabolic QTL co-segregate with the harvest index trait including those for important transport assimilates such as sugars and amino acids. Analysis of the flowering pattern of these lines revealed induced flowering at IL2-1 plants, suggest that hi2-1 may also affect harvest index and early ripening by changing plant architecture and flowering rate.


Asunto(s)
Agricultura , Manipulación de Alimentos , Metaboloma/genética , Sitios de Carácter Cuantitativo/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Adaptación Fisiológica/genética , Segregación Cromosómica/genética , Cruzamientos Genéticos , Sequías , Flores/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Endogamia , Patrón de Herencia/genética , Solanum lycopersicum/crecimiento & desarrollo , Fenotipo , Mapeo Físico de Cromosoma , Carácter Cuantitativo Heredable , Estrés Fisiológico/genética
14.
Metabolites ; 10(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213984

RESUMEN

The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.

15.
Nat Biotechnol ; 24(4): 447-54, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16531992

RESUMEN

Tomato represents an important source of fiber and nutrients in the human diet and is a central model for the study of fruit biology. To identify components of fruit metabolic composition, here we have phenotyped tomato introgression lines (ILs) containing chromosome segments of a wild species in the genetic background of a cultivated variety. Using this high-diversity population, we identify 889 quantitative fruit metabolic loci and 326 loci that modify yield-associated traits. The mapping analysis indicates that at least 50% of the metabolic loci are associated with quantitative trait loci (QTLs) that modify whole-plant yield-associated traits. We generate a cartographic network based on correlation analysis that reveals whole-plant phenotype associated and independent metabolic associations, including links with metabolites of nutritional and organoleptic importance. The results of our genomic survey illustrate the power of genome-wide metabolic profiling and detailed morphological analysis for uncovering traits with potential for crop breeding.


Asunto(s)
Mejoramiento Genético/métodos , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Fenotipo , Ingeniería de Proteínas/métodos
16.
Front Plant Sci ; 10: 1250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736986

RESUMEN

Carotenoids have various roles in plant physiology. Plant carotenoids are synthesized in plastids and are highly abundant in the chromoplasts of ripening fleshy fruits. Considerable research efforts have been devoted to elucidating mechanisms that regulate carotenoid biosynthesis, yet, little is known about the mechanism that triggers storage capacity, mainly through chromoplast differentiation. The Orange gene (OR) product stabilizes phytoene synthase protein (PSY) and triggers chromoplast differentiation. OR underlies carotenoid accumulation in orange cauliflower and melon. The OR's 'golden SNP', found in melon, alters the highly evolutionary conserved Arginine108 to Histidine and controls ß-carotene accumulation in melon fruit, in a mechanism yet to be elucidated. We have recently shown that similar carotenogenic metabolic flux is active in non-orange and orange melon fruit. This flux probably leads to carotenoid turnover but known carotenoid turnover products are not detected in non-orange fruit. Arrest of this metabolic flux, using chemical inhibitors or mutations, induces carotenoid accumulation and biogenesis of chromoplasts, regardless of the allelic state of OR. We suggest that the 'golden SNP' induces ß-carotene accumulation probably by negatively affecting the capacity to synthesize downstream compounds. The accumulation of carotenoids induces chromoplast biogenesis through a metabolite-induced mechanism. Carotenogenic turnover flux can occur in non-photosynthetic tissues, which do not accumulate carotenoids. Arrest of this flux by the 'golden SNP' or other flux-arrest mutations is a potential tool for the biofortification of agricultural products with carotenoids.

17.
Nat Genet ; 51(11): 1607-1615, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31676864

RESUMEN

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae/genética , Domesticación , Genoma de Planta , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Cucurbitaceae/clasificación , Cucurbitaceae/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Genómica , Fenotipo , Fitomejoramiento
18.
PLoS Biol ; 2(10): e245, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15328532

RESUMEN

Natural biodiversity is an underexploited sustainable resource that can enrich the genetic basis of cultivated plants with novel alleles that improve productivity and adaptation. We evaluated the progress in breeding for increased tomato (Solanum lycopersicum) yield using genotypes carrying a pyramid of three independent yield-promoting genomic regions introduced from the drought-tolerant green-fruited wild species Solanum pennellii. Yield of hybrids parented by the pyramided genotypes was more than 50% higher than that of a control market leader variety under both wet and dry field conditions that received 10% of the irrigation water. This demonstration of the breaking of agricultural yield barriers provides the rationale for implementing similar strategies for other agricultural organisms that are important for global food security.


Asunto(s)
Genes de Plantas , Genotipo , Solanum lycopersicum/genética , Análisis de Varianza , Cruzamiento , Cruzamientos Genéticos , Marcadores Genéticos , Técnicas Genéticas , Variación Genética , Genoma , Genoma de Planta , Heterocigoto , Hibridación Genética , Modelos Estadísticos , Fenotipo , Plantas/genética , Sitios de Carácter Cuantitativo
19.
Sci Rep ; 7(1): 9770, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852011

RESUMEN

Cucumis melo is highly diverse for fruit traits providing wide breeding and genetic research opportunities, including genome-wide association (GWA) analysis. We used a collection of 177 accessions representing the two C. melo subspecies and 11 horticultural groups for detailed characterization of fruit traits variation and evaluation of the potential of GWA for trait mapping in melon. Through genotyping-by-sequencing, 23,931 informative SNPs were selected for genome-wide analyses. We found that linkage-disequilibrium decays at ~100 Kb in this collection and that population structure effect on association results varies between traits. We mapped several monogenic traits to narrow intervals overlapping with known causative genes, demonstrating the potential of diverse collections and GWA for mapping Mendelian traits to a candidate-gene level in melon. We further report on mapping of fruit shape quantitative trait loci (QTLs) and comparison with multiple previous QTL studies. Expansion of sample size and a more balanced representation of taxonomic groups might improve efficiency for simple traits dissection. But, as in other plant species, integrated linkage-association multi-allelic approaches are likely to produce better combination of statistical power, diversity capture and mapping resolution in melon. Our data can be utilized for selection of the most appropriate accessions for such approaches.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae/genética , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Frutas , Ligamiento Genético , Variación Genética , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
20.
Front Plant Sci ; 7: 1022, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462343

RESUMEN

To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H(2) tests revealed galactinol (1) and asparagine (0.91) as the highest scorers among metabolites and nitrate reductase (0.73), NAD-glutamate dehydrogenase (0.52), and phosphoglucomutase (0.51) among enzymes. The overall low H(2) scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i) reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii) highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2' is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25) of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA