Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Biochem ; 655: 114832, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35948058

RESUMEN

The increasing interest in bioplastics, with regard to future environmental issues, has rendered research on bioplastic biodegradation highly important. However, only a few tools directly monitor the degradation of bioplastics without measuring the levels of gaseous products, such as carbon dioxide. Classical nonquantitative methods, such as clear zone tests on solid plates, and less-sensitive weight-loss experiments in liquid media measured using a precision scale, are still employed to screen the microbial players associated with bioplastic degradation and monitor the biodegradation rates. However, the simultaneous monitoring of the degradation of each component of blended bioplastics has not been previously reported. In the present study, to provide information regarding the degradation rates and compositional changes of different bioplastics in a blend in a time-dependent manner, we simultaneously monitored and quantified the degradation of four bioplastics, polyhydroxybutyrate (PHB), polybutylene succinate (PBS), polycaprolactone (PCL), and poly(butylene adipate-co-terephthalate) (PBAT), by Bacillus sp. JY36 using gas chromatography-mass spectrometry (GC-MS) analysis after fatty acid methyl ester (FAME) derivatization. Our results demonstrate the feasibility of using the GC-MS-based method described here to obtain comprehensive data regarding blended bioplastics and their degradation. Moreover, our findings indicate that this method may support classical analytic tools for assessing bioplastic biodegradation.


Asunto(s)
Poliésteres , Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas , Poliésteres/metabolismo
2.
Bioprocess Biosyst Eng ; 45(10): 1719-1729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36121506

RESUMEN

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.


Asunto(s)
Cupriavidus necator , Petróleo , Amidas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Azúcares de la Dieta/metabolismo , Azúcares de la Dieta/farmacología , Furaldehído/farmacología , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/farmacología , Hidroxibutiratos/metabolismo , Lignina , NAD/metabolismo , NAD/farmacología , Nicotina/metabolismo , Nicotina/farmacología , Nitrobencenos , Petróleo/metabolismo , Plásticos
3.
Bioprocess Biosyst Eng ; 44(4): 891-899, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33486578

RESUMEN

Cadaverine, 1,5-diaminopentane, is one of the most promising chemicals for biobased-polyamide production and it has been successfully produced up to molar concentration. Pyridoxal 5'-phosphate (PLP) is a critical cofactor for inducible lysine decarboxylase (CadA) and is required up to micromolar concentration level. Previously the regeneration of PLP in cadaverine bioconversion has been studied and salvage pathway pyridoxal kinase (PdxY) was successfully introduced; however, this system also required a continuous supply of adenosine 5'-triphosphate (ATP) for PLP regeneration from pyridoxal (PL) which add in cost. Herein, to improve the process further a method of ATP regeneration was established by applying baker's yeast with jhAY strain harboring CadA and PdxY, and demonstrated that providing a moderate amount of adenosine 5'-triphosphate (ATP) with the simple addition of baker's yeast could increase cadaverine production dramatically. After optimization of reaction conditions, such as PL, adenosine 5'-diphosphate, MgCl2, and phosphate buffer, we able to achieve high production (1740 mM, 87% yield) from 2 M L-lysine. Moreover, this approach could give averaged 80.4% of cadaverine yield after three times reactions with baker's yeast and jhAY strain. It is expected that baker's yeast could be applied to other reactions requiring an ATP regeneration system.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cadaverina/química , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae , Agar/química , Biotecnología/métodos , Biotransformación , Cadaverina/metabolismo , Carboxiliasas , Fermentación , Microbiología Industrial/instrumentación , Microbiología Industrial/métodos , Lisina/química , Lisina/metabolismo , Polímeros/química , Piridoxal , Regeneración
4.
Environ Geochem Health ; 43(8): 2913-2926, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33433782

RESUMEN

The present study was aimed to investigate brilliant green (BG) dye sorption onto soybean straw biochar (SSB) prepared at 800 °C and further understanding the sorption mechanism. Sorption kinetic models such as pseudo-first and pseudo-second order were executed for demonstrating sorption mechanism between the dye and biochar. Results of kinetics study were fitted well to pseudo-second-order kinetic model (R2 0.997) indicating that the reaction followed chemisorption mechanism. Furthermore, the effect of various parameters like sorbent dose, dye concentration, incubation time, pH and temperature on dye sorption was also studied. The maximum dye removal percentage and sorption capacity for SSB (800 °C) within 60 min were found to be 99.73% and 73.50 mg g- 1, respectively, at pH 8 and 60 °C temperature, whereas adsorption isotherm studies showed a higher correlation coefficient values for Freundlich model (R2 0.990-0.996) followed by Langmuir model suggesting that sorption process was multilayer. The characterization of biomass and biochar was performed with the aid of analytical techniques like scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) theory, X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). FTIR analysis showed active groups on biochar surface. BET study revealed higher surface area of biochar (194.7 m2/g) than the biomass (12.84 m2/g). Besides, phyto- and cytogenotoxic studies revealed significant decrease in the toxicity of dye containing water after treating with SSB. Therefore, this study has proved the sorption potential of soybean straw biochar for BG dye and could be further considered as sustainable cost-effective strategy for treating the textile dye-contaminated wastewater.


Asunto(s)
Glycine max , Compuestos de Amonio Cuaternario/química , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Termodinámica
5.
Anal Biochem ; 597: 113688, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32194075

RESUMEN

Glutaric acid is a precursor of a plasticizer that can be used for the production of polyester amides, ester plasticizer, corrosion inhibitor, and others. Glutaric acid can be produced either via bioconversion or chemical synthesis, and some metabolites and intermediates are produced during the reaction. To ensure reaction efficiency, the substrates, intermediates, and products, especially in the bioconversion system, should be closely monitored. Until now, high performance liquid chromatography (HPLC) has generally been used to analyze the glutaric acid-related metabolites, although it demands separate time-consuming derivatization and non-derivatization analyses. To substitute for this unreasonable analytical method, we applied herein a gas chromatography - mass spectrometry (GC-MS) method with ethyl chloroformate (ECF) derivatization to simultaneously monitor the major metabolites. We determined the suitability of GC-MS analysis using defined concentrations of six metabolites (l-lysine, cadaverine, 5-aminovaleric acid, 2-oxoglutaric acid, glutamate, and glutaric acid) and their mass chromatograms, regression equations, regression coefficient values (R2), dynamic ranges (mM), and retention times (RT). This method successfully monitored the production process in complex fermentation broth.


Asunto(s)
Ésteres del Ácido Fórmico/metabolismo , Glutaratos/metabolismo , Lisina/metabolismo , Cromatografía Líquida de Alta Presión , Fermentación , Ésteres del Ácido Fórmico/química , Cromatografía de Gases y Espectrometría de Masas , Glutaratos/química , Lisina/química , Estructura Molecular
6.
J Ind Microbiol Biotechnol ; 47(12): 1045-1057, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33259029

RESUMEN

Psychrophilic bacteria, living at low and mild temperatures, can contribute significantly to our understanding of microbial responses to temperature, markedly occurring in the bacterial membrane. Here, a newly isolated strain, Pseudomonas sp. B14-6, was found to dynamically change its unsaturated fatty acid and cyclic fatty acid content depending on temperature which was revealed by phospholipid fatty acid (PLFA) analysis. Genome sequencing yielded the sequences of the genes Δ-9-fatty acid desaturase (desA) and cyclopropane-fatty acid-acyl-phospholipid synthase (cfa). Overexpression of desA in Escherichia coli led to an increase in the levels of unsaturated fatty acids, resulting in decreased membrane hydrophobicity and increased fluidity. Cfa proteins from different species were all found to promote bacterial growth, despite their sequence diversity. In conclusion, PLFA analysis and genome sequencing unraveled the temperature-related behavior of Pseudomonas sp. B14-6 and the functions of two membrane-related enzymes. Our results shed new light on temperature-dependent microbial behaviors and might allow to predict the consequences of global warming on microbial communities.


Asunto(s)
Ácidos Grasos Insaturados , Pseudomonas , Secuencia de Aminoácidos , Bacterias/metabolismo , Secuencia de Bases , Ciclopropanos , Escherichia coli/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácido Graso Sintasas/genética , Ácidos Grasos/análisis , Ácidos Grasos Insaturados/metabolismo , Pseudomonas/metabolismo , Temperatura
7.
Bioprocess Biosyst Eng ; 43(5): 909-918, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31989256

RESUMEN

Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Expresión Génica , Metiltransferasas , Microorganismos Modificados Genéticamente , Presión Osmótica/efectos de los fármacos , Cloruro de Sodio/farmacología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/enzimología , Escherichia coli/genética , Halomonas/enzimología , Halomonas/genética , Metiltransferasas/biosíntesis , Metiltransferasas/genética , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
8.
J Am Coll Nutr ; 38(5): 447-456, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30676876

RESUMEN

Objective: In the present investigation, the effect of different cooking processes on L-DOPA level, phenolics contents, in vitro protein (IVPD) and starch digestibility (IVSD), and proximate composition with in vitro anti-inflammatory and antioxidant potential of Mucuna macrocarpa (MM) has been evaluated. Methods: The L-DOPA and major phenolics acids quantification of processed samples were done by a reverse-phase high-performance liquid chromatography (RP-HPLC) technique. Proximate composition, elemental quantification, and in vitro protein and starch digestibility of the samples were carried out by using spectrophotometric analysis. The anti-inflammatory activities of samples were evaluated by a human red blood cells (HRBCs) membrane stabilization test and bovine serum albumin (BSA) anti-denaturation assay. Antioxidant potential of processed beans was carried out by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and N,N-dimethyl-p-phenylendiamine (DMPD) assays and ferric reducing/antioxidant power (FRAP) assay. Results: The processed MM beans showed a significant reduction of L-DOPA (6.30%), phytic acid (25.78%), tannin (19.79%), and saponin (25.59%) in the boiling, autoclaving, and roasting processes. RP-HPLC quantification of major phenolics acids was also affected by the differential process as compare to the raw seed sample. The processed seeds also showed considerable improvement of in vitro protein (26.93%) and starch (20.30%) digestibility, whereas the anti-inflammatory potential and antioxidant potential of MM beans were decreased in the processed samples, indicating a reduction of antioxidant molecules. Conclusion: The differential process showed considerable changes in the proximate composition, in vitro digestibility, and biological potential. The present study recommends the utilization of MM beans after autoclaving and boiling for maximum nutritional potential with health benefits.


Asunto(s)
Culinaria/métodos , Digestión , Fabaceae , Levodopa/farmacología , Mucuna , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Proteínas en la Dieta/metabolismo , Humanos , Valor Nutritivo , Fenoles/farmacología , Semillas/química , Almidón/metabolismo
9.
J Environ Sci (China) ; 47: 7-13, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27593267

RESUMEN

The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico/química , Corynebacterium/fisiología , Petróleo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo , China , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Tolerancia a la Sal , Contaminantes del Suelo/análisis
10.
Int J Biol Macromol ; 263(Pt 1): 130339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387640

RESUMEN

Globally, water scarcity in arid and semiarid regions has become one of the critical issues that hinder sustainable agriculture. Agriculture, being a major water consumer, presents several challenges that affect water availability. Hydrogels derived from polysaccharides seed gums are hydrophilic polymers capable of retaining substantial moisture in their three-dimensional network and releasing it back into the soil during drought conditions. Implementation of hydrogels in the agricultural sectors enhances soil health, plant growth, and crop yield. Furthermore, the soil permeability, density, structure, texture, and rate of evaporation and percolation of water are modified by hydrogel. In this review, hydrogels based on natural plant seed gum like guar, fenugreek, Tara and locust beans have been discussed in terms of their occurrence, properties, chemical structure, method of synthesis, and swelling behavior. The focus extends to recent applications of modified seed gum-based natural hydrogels in agriculture, serving as soil conditioners and facilitating nutrient delivery to growing plants. The swelling behavior and inherent structure of these hydrogels can help researchers unravel their maximum possibilities to promote sustainable agriculture and attenuate the obstacles propounded by our dynamic nature. The current review also examines market growth, prospects, and challenges of eco-friendly hydrogels in recent times.


Asunto(s)
Hidrogeles , Polisacáridos , Hidrogeles/química , Polisacáridos/química , Agricultura , Suelo/química , Semillas , Agua/química , Gomas de Plantas/química
11.
J Basic Microbiol ; 53(2): 128-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22581742

RESUMEN

In the present study, a feather degrading bacterial strain was isolated from poultry waste disposal site, Kolhapur, India. The bacterium was identified as Chryseobacterium sp. RBT using 16S rRNA gene sequence analysis. Chryseobacterium sp. RBT showed rapid hydrolysis of native feathers within 30 h and produced the highest level of keratinase activity (98.3 U/ml). Keratin containing wastes viz. silk, human hair, wool and chicken feathers were tested for keratin degrading ability of the bacterium. Amongst the tested substrates, the Chryseobacterium sp. RBT showed more specificity towards chicken feathers (98.6% degradation) with maximum keratinase activity (98.3 U/ml) and solubilized protein concentration (3.84 mg/ml). Effect of various physico-chemical parameters (temperature, pH, carbon and nitrogen sources) on keratinase production was monitored. The maximum keratinase activity was observed at pH (8.6) and temperature (50 °C). Molasses (1.0% w/v) acted as an inducer and enhanced the keratinolytic activity by two fold, while starch worked as an inhibitor. The goat skin when treated with crude keratinase enzyme (2% v/v), showed complete dehairing within 12 h. Hence, Chryseobacterium sp. RBT shows potential as a candidate for treating the keratinous waste in an ecofriendly manner.


Asunto(s)
Chryseobacterium/metabolismo , Queratinas/metabolismo , Microbiología del Suelo , Animales , Biotransformación , Pollos , Chryseobacterium/clasificación , Chryseobacterium/genética , Chryseobacterium/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Plumas/metabolismo , Plumas/microbiología , Cabras , Humanos , Concentración de Iones de Hidrógeno , India , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
12.
Chemosphere ; 339: 139715, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536539

RESUMEN

Phenoxyacetic acid herbicides are widely used in agriculture for controlling weeds. These organic compounds are persistent and recalcitrant, often contaminating water and soil. Therefore, we studied five pristine biochars (BCs), and southern yellow pine (SYP) based self-activated carbon (SAC) for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide. Among the tested adsorbents, SYP-SAC-15 demonstrated higher (>90%) 2,4-D removal from water. The SYP-SAC-15 was produced using a facile and green route where the biomass pyrolysis gases worked as activating agents creating a highly porous structure with a surface area of 1499.79 m2/g. Different adsorption kinetics and isotherm models were assessed for 2,4-D adsorption on SYP-SAC-15, where the data fitted best to pseudo-second order (R2 > 0.999) and Langmuir (R2 > 0.991) models, respectively. Consequently, the adsorption process was mainly dominated by the chemisorption mechanism with monolayer coverage of SYP-SAC-15 surface with 2,4-D molecules. At the optimum pH of 2, the maximum 2,4-D adsorption capacity of SYP-SAC-15 reached 471.70 mg/g. Furthermore, an increase in the water salinity demonstrated a positive influence on 2,4-D adsorption, whereas humic acid (HA) showed a negative impact on 2,4-D adsorption. The regeneration ability of SYP-SAC-15 showed excellent performance by retaining 71.09% adsorption capability at the seventh adsorption-desorption cycle. Based on the operating pH, surface area, spectroscopic data, kinetics, and isotherm modeling, the adsorption mechanism was speculated. The 2,4-D adsorption on SYP-SAC-15 was mainly governed by pore filling, electrostatic interactions, hydrogen bonding, hydrophobic and π-π interactions.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Herbicidas/química , Carbón Orgánico/química , Adsorción , Agua , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Ácido 2,4-Diclorofenoxiacético/química , Cinética
13.
Bioresour Technol ; 370: 128571, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603752

RESUMEN

In this study, fourteen types of biochar produced using seven biomasses at temperatures 300 °C and 600 °C were screened for phenolics (furfural and hydroxymethylfurfural (HMF)) removal. Eucheuma spinosum biochar (EB-BC 600) showed higher adsorption capacity to furfural (258.94 ± 3.2 mg/g) and HMF (222.81 ± 2.3 mg/g). Adsorption kinetics and isotherm experiments interpreted that EB-BC 600 biochar followed the pseudo-first-order kinetic and Langmuir isotherm model for both furfural and HMF adsorption. Different hydrolysates were detoxified using EB-BC 600 biochar and used as feedstock for engineered Escherichia coli. An increased polyhydroxyalkanoates (PHA) production with detoxified barley biomass hydrolysate (DBBH: 1.71 ± 0.07 g PHA/L), detoxified miscanthus biomass hydrolysate (DMBH: 0.87 ± 0.03 g PHA/L) and detoxified pine biomass hydrolysate (DPBH: 1.28 ± 0.03 g PHA/L) was recorded, which was 2.8, 6.4 and 3.4 folds high as compared to undetoxified hydrolysates. This study reports the mechanism involved in furfural and HMF removal using biochar and valorization of hydrolysate into PHA.


Asunto(s)
Polihidroxialcanoatos , Biomasa , Furaldehído , Carbón Orgánico
14.
Int J Biol Macromol ; 225: 757-766, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400208

RESUMEN

Phasin is a surface-binding protein of polyhydroxyalkanoate (PHA) granules that is encoded by the phaP gene. As its expression increases, PHA granules become smaller, to increase their surface area, and are densely packed inside the cell, thereby increasing the PHA content. A wide range of PHA-producing bacteria have phaP genes; however, their PHA productivity differs, although they are derived from the cognate bacterial host cell. Modulating phasin expression could be a new strategy to enhance PHA production. This study aimed to characterize the effect of heterologous phasins on the reconstitution of E. coli BL21(DE3) and determine the best synergistic phaP gene combination to produce polyhydroxybutyrate (PHB). We identified novel phasins from a PHB high-producer strain, Halomonas sp. YLGW01, and introduced a combination of phaP genes into Escherichia coli. The resulting E. coli phaP1,3 strain had enhanced PHB production by 2.9-fold, leading to increased cell mass and increased PHB content from 48 % to 65 %. This strain also showed increased tolerance to inhibitors, such as furfural and vanillin, enabling the utilization of lignocellulose biosugar as a carbon source. These results suggested that the combination of phaP1 and phaP3 genes from H. sp. YLGW01 could increase PHB production and robustness.


Asunto(s)
Escherichia coli , Lectinas de Plantas , Escherichia coli/genética , Escherichia coli/metabolismo , Lectinas de Plantas/metabolismo , Proteínas Bacterianas/química , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
15.
Sci Total Environ ; 825: 153895, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35182616

RESUMEN

Worldwide demand for antibiotics and pharmaceutical products is continuously increasing for the control of disease and improvement of human health. Poor management and partial metabolism of these compounds result in the pollution of aquatic systems, leading to hazardous effects on flora, fauna, and ecosystems. In the past decade, the importance of microalgae in micropollutant removal has been widely reported. Microalgal systems are advantageous as their cultivation does not require additional nutrients: they can recover resources from wastewater and degrade antibiotics and pharmaceutical pollutants simultaneously. Bioadsorption, degradation, and accumulation are the main mechanisms involved in pollutant removal by microalgae. Integration of microalgae-mediated pollutant removal with other technologies, such as biodiesel, biochemical, and bioelectricity production, can make this technology more economical and efficient. This article summarizes the current scenario of antibiotic and pharmaceutical removal from wastewater using microalgae-mediated technologies.


Asunto(s)
Contaminantes Ambientales , Microalgas , Antibacterianos/metabolismo , Biodegradación Ambiental , Biocombustibles , Biomasa , Ecosistema , Contaminantes Ambientales/metabolismo , Humanos , Microalgas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Aguas Residuales
16.
Bioresour Technol ; 361: 127753, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35944863

RESUMEN

Sphingobium yanoikuyae BBL01 can produce exopolysaccharides (EPS) and polyhydroxyalkanoates (PHAs). The effect of side products (furfural, hydroxymethylfurfural (HMF), vanillin, and acetate) produced during pretreatment of biomass was evaluated on S. yanoikuyae BBL01. It was observed that a certain concentration range (0.01-0.03 %) of these compounds can improve growth, EPS production, and polyhydroxybutyrate (PHB) accumulation. The addition of HMF increases glucose and xylose utilization while other side products have a negative effect. The C/N of 5 favors EPS production (3.24 ± 0.05 g/L), while a higher C/N ratio of 30 promotes PHB accumulation (38.7 ± 0.08 % w/w), when commercial sugar is used as a carbon source. Pine biomass-derived biochar was able to remove 40 ± 2.1 % of total phenolic. Various biomass hydrolysates were evaluated and the use of detoxified pine biomass hydrolysate (DPH) as a carbon source resulted in the higher coproduction of EPS (2.83 ± 0.03 g/L) and PHB (40.8 ± 2.4 % w/w).


Asunto(s)
Pinus , Polihidroxialcanoatos , Biomasa , Carbono , Carbón Orgánico , Sphingomonadaceae
17.
Bioresour Technol ; 358: 127437, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35680087

RESUMEN

Urbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.


Asunto(s)
Biocombustibles , Metano , Biomasa , Fermentación , Hidrólisis
18.
Bioresour Technol ; 359: 127499, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35718248

RESUMEN

The present study deals with the utilization of lignocellulosic hydrolysate-based carbon source for exopolysaccharide (EPS) production using newly reported marine Echinicola sediminis BBL-M-12. This bacterium produced 7.56 g L-1 and 5.32 g L-1 of EPS on supplementing 30 g L-1 glucose and 10 g L-1 xylose as the sole carbon source, respectively. Whereas on feeding Miscanthus hydrolysate (MCH) with glucose content adjusting to 20 g L-1, E. sediminis BBL-M-12 produced 6.18 g L-1 of EPS. The inhibitors study showed bacterium could tolerate higher concentrations of fermentation inhibitors include furfural (0.05%), 5-hydroxymethylfurfural (0.1%), vanillin (0.1%) and acetate (0.5%). Moreover, the EPS composition was greatly altered with the type and concentration of carbon source supplied, although ß-D-Glucopyranose, ß-D-Galactopyranose, and ß-D-Xylopyranose were the dominant monomers detected. Interestingly, E. sediminis BBL-M-12 EPS revealed excellent environmental applications like clay flocculation, oil emulsification, and removal of humic acid, textile dye, and heavy metal from the aqueous phase.


Asunto(s)
Carbono , Lignina , Fermentación , Glucosa
19.
Chemosphere ; 296: 134034, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35183576

RESUMEN

The existing study deals with adsorptive removal of the endocrine-disrupting chemical bisphenol-A and toxic azo dye solvent black-3 from single and binary solutions. These two chemicals are commonly used as an additive in the synthetic plastic industries. Among the tested twenty pristine and modified biochars, the pristine pinecone biochar produced at 750 °C revealed greater bisphenol-A removal. Simulation of the experimental data obtained for bisphenol-A and dye removal from the single-component solution offered a best-fit to Elovich (R2 > 0.98) and pseudo-second-order (R2 > 0.99) kinetic models, respectively. Whereas for the bisphenol-A + dye removal from binary solution, the values for bisphenol-A adsorption were best suited to Elovich (R2 > 0.98), while pseudo-second-order (R2 > 0.99) for dye removal. Similarly, the two-compartment model also demonstrated better values (R2 > 0.92) for bisphenol-A and dye removal from single and binary solutions with greater Ffast values (except for bisphenol-A in binary solution). The Langmuir isotherm model demonstrated the highest regression coefficient values (R2 > 0.99) for bisphenol-A and dye removal with the highest adsorption capacity of 38.387 mg g-1 and 346.856 mg g-1, correspondingly. Besides, the co-existence of humic acid revealed a positive impact on bisphenol-A removal, while the dye removal rate was slightly hindered in presence of humic acid. The absorption process showed monolayer coverage of biochar surface with contaminants using a chemisorption mechanism with fast reactions between functional groups on the adsorbate and adsorbent. Whereas the adsorption mechanism was primarily controlled by hydrogen bonding, hydrophobic and π-π electron-donor-acceptor interactions as confirmed by FTIR, XPS, and pH investigations.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo , Carbón Orgánico/química , Sustancias Húmicas , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Solventes , Contaminantes Químicos del Agua/análisis
20.
Int J Biol Macromol ; 201: 653-661, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35038470

RESUMEN

Polyhydroxyalkanoates (PHAs) and their derivatives are biopolymers that have the potential of replacing petroleum-based plastics and can be produced and degraded via bacterial metabolism. However, there are only a few studies on polyhydroxybutyrate (PHB) production using lactate, one of the major waste organic acids that could be implemented in the production of polylactic acid (PLA). Herein, we screened and characterized the PHA-producing microbial strains isolated from saltern soil from Docho Island (South Korea). Among the 24 identified microorganisms that can use lactate as a carbon source, Bacillus sp. YHY22, a newly reported strain, produced the highest amount of PHB: 4.05 g/L with 6.25 g/L dry cell weight, which is 64.7% PHB content under optimal production conditions. Bacillus sp. YHY22 could form the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer with propionate addition. Moreover, Bacillus sp. YHY22 produced PHB in non-sterilized 2% lactate and 8% NaCl marine broth culture medium, suggesting that its production can occur in high salinity media without additional sterilization steps, rendering fermentation cost- and time-efficient.


Asunto(s)
Bacillus , Polihidroxialcanoatos , Bacillus/metabolismo , Biopolímeros/metabolismo , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Poliésteres/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA