Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 405-414, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871207

RESUMEN

Aided by efforts to improve their speed and efficiency, molecular dynamics (MD) simulations provide an increasingly powerful tool to study the structure-function relationship of pentameric ligand-gated ion channels (pLGICs). However, accurate reporting of the channel state and observation of allosteric regulation by agonist binding with MD remains difficult due to the timescales necessary to equilibrate pLGICs from their artificial and crystalized conformation to a more native, membrane-bound conformation in silico. Here, we perform multiple all-atom MD simulations of the homomeric 5-hydroxytryptamine 3A (5-HT3A) serotonin receptor for 15 to 20 µs to demonstrate that such timescales are critical to observe the equilibration of a pLGIC from its crystalized conformation to a membrane-bound conformation. These timescales, which are an order of magnitude longer than any previous simulation of 5-HT3A, allow us to observe the dynamic binding and unbinding of 5-hydroxytryptamine (5-HT) (i.e., serotonin) to the binding pocket located on the extracellular domain (ECD) and allosteric regulation of the transmembrane domain (TMD) from synergistic 5-HT binding. While these timescales are not long enough to observe complete activation of 5-HT3A, the allosteric regulation of ion gating elements by 5-HT binding is indicative of a preactive state, which provides insight into molecular mechanisms that regulate channel activation from a resting state. This mechanistic insight, enabled by microsecond-timescale MD simulations, will allow a careful examination of the regulation of pLGICs at a molecular level, expanding our understanding of their function and elucidating key structural motifs that can be targeted for therapeutic regulation.


Asunto(s)
Activación del Canal Iónico , Simulación de Dinámica Molecular , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/metabolismo , Regulación Alostérica , Membranas Artificiales , Dominios Proteicos , Factores de Tiempo
2.
Analyst ; 145(8): 2925-2936, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32159165

RESUMEN

We show that commercially sourced n-channel silicon field-effect transistors (nFETs) operating above their threshold voltage with closed loop feedback to maintain a constant channel current allow a pH readout resolution of (7.2 ± 0.3) × 10-3 at a bandwidth of 10 Hz, or ≈3-fold better than the open loop operation commonly employed by integrated ion-sensitive field-effect transistors (ISFETs). We leveraged the improved nFET performance to measure the change in solution pH arising from the activity of a pathological form of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, and showed quantitative agreement with previous measurements. The improved pH resolution was realized while the devices were operated in a remote sensing configuration with the pH sensing element off-chip and connected electrically to the FET gate terminal. We compared these results with those measured by using a custom-built dual-gate 2D field-effect transistor (dg2DFET) fabricated with 2D semi-conducting MoS2 channels and a signal amplification of 8. Under identical solution conditions the nFET performance approached the dg2DFETs pH resolution of (3.9 ± 0.7) × 10-3. Finally, using the nFETs, we demonstrated the effectiveness of a custom polypeptide, p5, as a therapeutic agent in restoring the function of Cdk5. We expect that the straight-forward modifications to commercially sourced nFETs demonstrated here will lower the barrier to widespread adoption of these remote-gate devices and enable sensitive bioanalytical measurements for high throughput screening in drug discovery and precision medicine applications.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Quinasa 5 Dependiente de la Ciclina/análisis , Transistores Electrónicos , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Humanos , Concentración de Iones de Hidrógeno , Fármacos Neuroprotectores/química , Péptidos/química , Silicio/química
3.
Biophys J ; 115(9): 1720-1730, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30287110

RESUMEN

Molecular dynamics simulations were performed to describe the function of the ion-channel-forming toxin α-hemolysin (αHL) in lipid membranes that were composed of either 1,2-diphytanoyl-sn-glycero-3-phospho-choline or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline. The simulations highlight the importance of lipid type in maintaining αHL structure and function, enabling direct comparison to experiments for biosensing applications. We determined that although the two lipids studied are similar in structure, 1,2-diphytanoyl-sn-glycero-3-phospho-choline membranes better match the hydrophobic thickness of αHL compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline membranes. This hydrophobic match is essential to maintaining proper alignment of ß-sheet loops at the trans entrance of αHL, which, when disrupted, creates an additional constriction to ion flow that decreases the channel current below experimental values and creates greater variability in channel conductance. Agreement with experiments was further improved with sufficient lipid membrane equilibration and allowed the discrimination of subtle αHL conduction states with lipid type. Finally, we explore the effects of truncating the extramembrane cap of αHL and its role in maintaining proper alignment of αHL in the membrane and channel conductance. Our results demonstrate the essential role of lipid type and lipid-protein interactions in simulations of αHL and will considerably improve the interpretation of experimental data.


Asunto(s)
Proteínas Hemolisinas/metabolismo , Metabolismo de los Lípidos , Simulación de Dinámica Molecular , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Proteínas Hemolisinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Conformación Proteica
4.
ACS Appl Mater Interfaces ; 11(18): 16683-16692, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30990006

RESUMEN

Metal-mediated exfoliation has been demonstrated as a promising approach for obtaining large-area flakes of two-dimensional (2D) materials to fabricate prototypical nanoelectronics. However, several processing challenges related to organic contamination at the interface of a 2D material and gate oxide must be overcome to realize robust devices with high yields. Here, we demonstrate an optimized process to realize high-performance field-effect transistor (FET) arrays from large-area (∼5000 µm2), monolayer MoS2 with a yield of 85%. A central element of this process is an exposed material forming gas anneal (EM-FGA) that results in uniform FET performance metrics (i.e., field-effect mobilities, threshold voltages, and contact performance). Complementary analytical measurements show that the EM-FGA process reduces deleterious channel doping effects by decreasing organic contamination while also reducing the prevalence of insulating molybdenum oxide, effectively improving the MoS2-gate oxide interface. The uniform FET performance metrics and high device yield achieved by applying the EM-FGA technique on large-area 2D material flakes will help advance the fabrication of complex 2D nanoelectronic devices and demonstrate the need for improved engineering of the 2D material-gate oxide interface.

5.
Nanoscale ; 11(33): 15622-15632, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31407757

RESUMEN

We have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS2, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10-6 at 10 Hz. This high device performance, which is a function of the structure of our device, is achieved by remotely connecting the gate to a pH sensing element allowing the FETs to be reused. Because pH measurements are fundamentally important in biotechnology, the increased resolution demonstrated here will benefit numerous applications ranging from pharmaceutical manufacturing to clinical diagnostics. As an example, we experimentally quantified the function of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, at concentrations that are 5-fold lower than physiological values, and with sufficient time-resolution to allow the estimation of both steady-state and kinetic parameters in a single experiment. The high sensitivity, increased resolution, and fast turnaround time of the measurements will allow the development of early diagnostic tools and novel therapeutics to detect and treat neurological conditions years before currently possible.


Asunto(s)
Técnicas Biosensibles/métodos , Quinasa 5 Dependiente de la Ciclina/análisis , Disulfuros/química , Molibdeno/química , Enfermedad de Alzheimer/diagnóstico , Quinasa 5 Dependiente de la Ciclina/metabolismo , Capacidad Eléctrica , Humanos , Concentración de Iones de Hidrógeno , Líquidos Iónicos/química , Cinética , Límite de Detección , Relación Señal-Ruido , Temperatura , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA