RESUMEN
Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin-spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1'-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.
Asunto(s)
Ciclohexanos , Óxidos de Nitrógeno , Espectroscopía de Resonancia por Spin del ElectrónRESUMEN
The reaction of 3-aryl-N-(aryl)propiolamides with arenes in TfOH at room temperature for 0.5 h led to 4,4-diaryl-3,4-dihydroquinolin-2-(1H)-ones in yields of 44-98%. The obtained dihydroquinolinones were further transformed into the corresponding N-acyl or N-formyl derivatives. For the latter, the superelectrophilic activation of the N-formyl group by TfOH in the reaction with benzene resulted in the formation of N-(diphenylmethyl)-substituted dihydroquinolinones.
RESUMEN
Radical anions (RAs) are the key intermediates of the selective hydrodefluorination of polyfluoroarenes. We used the techniques of optically detected electron paramagnetic resonance (OD EPR), time-resolved fluorescence, time-resolved magnetic field effect (TR MFE), and the density functional theory to study the possibility of RAs formation from 4-aminononafluorobiphenyl (1) and pentafluoroaniline (2) and estimate their lifetimes and decay channels. To our knowledge, both RAs have not been detected earlier. We have registered the OD EPR spectrum for relatively stable in nonpolar solutions 1(-â¢) but failed to register the spectra for 2(-â¢). However, we have managed to fix the 2(-â¢) by the TR MFE method and obtained its hyperfine coupling constants. The lifetime of 2(-â¢) was found to be only a few nanoseconds. The activation energy of its decay was estimated to be 3.6 ± 0.3 kcal/mol. According to the calculation results, the short lifetime of 2(-â¢) is due to the RA fast fragmentation with the F(-) elimination from ortho-position to the amine group. The calculated energy barrier, 3.2 kcal/mol, is close to the experimental value. The fragmentation of 2(-â¢) in a nonpolar solvent is possible due to the stabilization of the incipient F(-) anion by the binding with the amine group proton.