Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175856

RESUMEN

Enhancement in chemisorption is one of the active research areas in carbon materials. To remedy the thermally degraded chemisorption occurring at high temperatures, we report a comprehensive study of kink structures in free-standing monoatomic carbon nanowires upon heating. Our Monte Carlo simulation considers multi-monoatomic carbon chains laterally interacting by van der Waals forces. Our study reveals that carbon nanowires maintain their linearity regardless of chain length at low temperatures, but this is not the case at high temperatures. Disordered kink structure is observed in short carbon chains, especially above the Peierls transition temperature. A severe kink structure may increase the possibility of attaching negatively charged atoms, thereby contributing to the development of next-generation materials for chemisorption at high temperatures. We have also provided an important indication that any physical property of the finite-length carbon chain predicted by ab initio calculation should reconsider the atomic rearrangement due to thermal instability at high temperatures.


Asunto(s)
Nanocables , Nanocables/química , Carbono/química , Simulación por Computador , Frío , Temperatura de Transición
2.
Nanoscale ; 10(23): 11186-11195, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29873371

RESUMEN

The study of magnetism without the involvement of transition metals or rare earth ions is considered the key to the fabrication of next generation spintronic devices. Several recent reports claim that optimizing the occupation number of the mixed p-orbitals is the correct way to reinforce p-orbital magnetism in bulk crystals. We provide experimental evidence that the kinked monoatomic carbon chains, the so-called linear-chained carbon, generate intrinsic ferromagnetism even above room temperature. According to our ab initio calculations, unconventional magnetism has its origin in the p-shells. In contrast, the linear monoatomic carbon chains are non-magnetic. Although the optimized differential spin density of states at the Fermi level (SDOS) of the kinked carbon chains is higher than that of bulk Fe, the magnetic moment is as low as 0.3µB. In order to enhance the magnetic response, we decided to tune the p-orbital magnetism by adding dopants from groups IV to VII of the periodic table. We observed that the strength of the p-orbital magnetism and the sign of the exchange interaction depend not only on the kink angle, but also on the concentration of lone pair electrons, free radical electrons, lateral chain spacing, internal electric dipole, dative covalent bonds and the Bohr radius of the dopants. Surprisingly, the V and VII-doped carbon chains show a strong non-zero SDOS, which has its origin in the p-shells. The VII-doped carbon chains give the SDOS of the opposite sign. Our best system, the arsenic-doped carbon chain, exhibits a strong local magnetic moment of 1.5µB, which is comparable to that of the bulk Fe of 2.2µB, with the mean exchange-correlation energy reaching a 63% ratio relative to that of the bulk Fe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA