Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Immunol ; 45(1): 15, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312004

RESUMEN

PURPOSE: PI4KA-related disorder is a highly clinically variable condition characterized by neurological (limb spasticity, developmental delay, intellectual disability, seizures, ataxia, nystagmus) and gastrointestinal (inflammatory bowel disease and multiple intestinal atresia) manifestations. Although features consistent with immunodeficiency (autoimmunity/autoinflammation and recurrent infections) have been reported in a subset of patients, the burden of B-cell deficiency and hypogammaglobulinemia has not been extensively investigated. We sought to describe the clinical presentation and manifestations of patients with PI4KA-related disorder and to investigate the metabolic consequences of biallelic PI4KA variants in B cells. METHODS: Clinical data from patients with PI4KA variants were obtained. Multi-omics analyses combining transcriptome, proteome, lipidome and metabolome analyses in conjunction with functional assays were performed in EBV-transformed B cells. RESULTS: Clinical and laboratory data of 13 patients were collected. Recurrent infections (7/13), autoimmune/autoinflammatory manifestations (5/13), B-cell deficiency (8/13) and hypogammaglobulinemia (8/13) were frequently observed. Patients' B cells frequently showed increased transitional and decreased switched memory B-cell subsets. Pathway analyses based on differentially expressed transcripts and proteins confirmed the central role of PI4KA in B cell differentiation with altered B-cell receptor (BCR) complex and signalling. By altering lipids production and tricarboxylic acid cycle regulation, and causing increased endoplasmic reticulum stress, biallelic PI4KA mutations disrupt B cell metabolism inducing mitochondrial dysfunction. As a result, B cells show hyperactive PI3K/mTOR pathway, increased autophagy and deranged cytoskeleton organization. CONCLUSION: By altering lipid metabolism and TCA cycle, impairing mitochondrial activity, hyperactivating mTOR pathway and increasing autophagy, PI4KA-related disorder causes a syndromic inborn error of immunity presenting with B-cell deficiency and hypogammaglobulinemia.


Asunto(s)
Agammaglobulinemia , Linfocitos B , Mutación , Humanos , Agammaglobulinemia/genética , Agammaglobulinemia/inmunología , Agammaglobulinemia/diagnóstico , Mutación/genética , Masculino , Linfocitos B/inmunología , Femenino , Niño , Preescolar , Adolescente , Alelos , Lactante , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/genética
2.
J Inherit Metab Dis ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252529

RESUMEN

Mucopolysaccharidosis II (MPS II; Hunter syndrome; OMIM 309900) is a rare, X-linked, heterogeneous lysosomal storage disease. Approximately two-thirds of patients develop cognitive impairment, which is difficult to assess in clinical trials, partly owing to the variable nature of cognitive impairment. Analyzing data from siblings can help to minimize this heterogeneity. We report analyses of cognitive function from siblings with MPS II enrolled in clinical trials: a natural history study (NCT01822184), a randomized, open-label, phase 2/3 study of intravenous (IV) idursulfase with or without intrathecal idursulfase (idursulfase-IT; NCT02055118), and its extension (NCT2412787). Cognitive function was assessed using Differential Abilities Scales, Second Edition General Conceptual Ability (DAS-II GCA) scores; Bayley Scales of Infant and Toddler Development, Third Edition; and Vineland Adaptive Behavior Scales, Second Edition Adaptive Behavior Composite (VABS-II ABC). Seven sets of siblings (six pairs and one set of three) were included. All patients received IV idursulfase and 10 received subsequent idursulfase-IT. Younger siblings initiated IV idursulfase at an earlier age than their older sibling(s) in six of the sets; the younger sibling started treatment before 1 year of age in three sets. Monthly idursulfase-IT was generally associated with a stabilization of cognitive function: DAS-II GCA and VABS-II ABC scores were higher at age-matched assessments in the majority of those who either received idursulfase-IT earlier than their sibling or who received idursulfase-IT versus no idursulfase-IT. These data suggest that early initiation of intrathecal enzyme replacement therapy may stabilize or slow cognitive decline in some patients with neuronopathic MPS II.

3.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37197783

RESUMEN

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Neurodegenerativas , Humanos , ARN Polimerasa III/genética , Patrón de Herencia , ARN Polimerasas Dirigidas por ADN/genética
4.
Mol Genet Metab ; 137(1-2): 92-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35961250

RESUMEN

Enzyme replacement therapy with weekly infused intravenous (IV) idursulfase is effective in treating somatic symptoms of mucopolysaccharidosis II (MPS II; Hunter syndrome). A formulation of idursulfase for intrathecal administration (idursulfase-IT) is under investigation for the treatment of neuronopathic MPS II. Here, we report 36-month data from the open-label extension (NCT02412787) of a phase 2/3, randomized, controlled study (HGT-HIT-094; NCT02055118) that assessed the safety and efficacy of monthly idursulfase-IT 10 mg in addition to weekly IV idursulfase on cognitive function in children older than 3 years with MPS II and mild-to-moderate cognitive impairment. Participants were also enrolled in this extension from a linked non-randomized sub-study of children younger than 3 years at the start of idursulfase-IT therapy. The extension safety population comprised 56 patients who received idursulfase-IT 10 mg once a month (or age-adjusted dose for sub-study patients) plus IV idursulfase (0.5 mg/kg) once a week. Idursulfase-IT was generally well tolerated over the cumulative treatment period of up to 36 months. Overall, 25.0% of patients had at least one adverse event (AE) related to idursulfase-IT; most treatment-emergent AEs were mild in severity. Of serious AEs (reported by 76.8% patients), none were considered related to idursulfase-IT treatment. There were no deaths or discontinuations owing to AEs. Secondary efficacy analyses (in patients younger than 6 years at phase 2/3 study baseline; n = 40) indicated a trend for improved Differential Ability Scale-II (DAS-II) General Conceptual Ability (GCA) scores in the early idursulfase-IT versus delayed idursulfase-IT group (treatment difference over 36 months from phase 2/3 study baseline: least-squares mean, 6.8 [90% confidence interval: -2.1, 15.8; p = 0.2064]). Post hoc analyses of DAS-II GCA scores by genotype revealed a clinically meaningful treatment effect in patients younger than 6 years with missense variants of the iduronate-2-sulfatase gene (IDS) (least-squares mean [standard error] treatment difference over 36 months, 12.3 [7.24]). These long-term data further suggest the benefits of idursulfase-IT in the treatment of neurocognitive dysfunction in some patients with MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Niño , Preescolar , Humanos , Recién Nacido , Terapia de Reemplazo Enzimático/efectos adversos , Iduronato Sulfatasa/efectos adversos , Iduronato Sulfatasa/genética , Ácido Idurónico , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/genética
5.
Mol Genet Metab ; 137(1-2): 127-139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36027721

RESUMEN

Two-thirds of patients with mucopolysaccharidosis II (MPS II; Hunter syndrome) have cognitive impairment. This phase 2/3, randomized, controlled, open-label, multicenter study (NCT02055118) investigated the effects of intrathecally administered idursulfase-IT on cognitive function in patients with MPS II. Children older than 3 years with MPS II and mild-to-moderate cognitive impairment (assessed by Differential Ability Scales-II [DAS-II], General Conceptual Ability [GCA] score) who had tolerated intravenous idursulfase for at least 4 months were randomly assigned (2:1) to monthly idursulfase-IT 10 mg (n = 34) via an intrathecal drug delivery device (IDDD; or by lumbar puncture) or no idursulfase-IT treatment (n = 15) for 52 weeks. All patients continued to receive weekly intravenous idursulfase 0.5 mg/kg as standard of care. Of 49 randomized patients, 47 completed the study (two patients receiving idursulfase-IT discontinued). The primary endpoint (change from baseline in DAS-II GCA score at week 52 in a linear mixed-effects model for repeated measures analysis) was not met: although there was a smaller decrease in DAS-II GCA scores with idursulfase-IT than with no idursulfase-IT at week 52, this was not significant (least-squares mean treatment difference [95% confidence interval], 3.0 [-7.3, 13.3]; p = 0.5669). Changes from baseline in Vineland Adaptive Behavioral Scales-II Adaptive Behavior Composite scores at week 52 (key secondary endpoint) were similar in the idursulfase-IT (n = 31) and no idursulfase-IT (n = 14) groups. There were trends towards a potential positive effect of idursulfase-IT across DAS-II composite, cluster, and subtest scores, notably in patients younger than 6 years at baseline. In a post hoc analysis, there was a significant (p = 0.0174), clinically meaningful difference in change from baseline in DAS-II GCA scores at week 52 with idursulfase-IT (n = 13) versus no idursulfase-IT (n = 6) among those younger than 6 years with missense iduronate-2-sulfatase gene variants. Overall, idursulfase-IT reduced cerebrospinal glycosaminoglycan levels from baseline by 72.0% at week 52. Idursulfase-IT was generally well tolerated. These data suggest potential benefits of idursulfase-IT in the treatment of cognitive impairment in some patients with neuronopathic MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Mieloma Múltiple , Niño , Preescolar , Humanos , Terapia de Reemplazo Enzimático/métodos , Glicosaminoglicanos , Iduronato Sulfatasa/genética , Ácido Idurónico , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/genética
6.
Clin Genet ; 102(1): 40-55, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388452

RESUMEN

Glucose transporter 1 deficiency syndrome (GLUT1DS) is a neurometabolic disorder caused by haploinsufficiency of the GLUT1 glucose transporter (encoded by SLC2A1) leading to defective glucose transport across the blood-brain barrier. This work describes the genetic analysis of 56 patients with clinical or biochemical GLUT1DS hallmarks. 55.4% of these patients had a pathogenic variant of SLC2A1, and 23.2% had a variant in one of 13 different genes. No pathogenic variant was identified for the remaining patients. Expression analysis of SLC2A1 indicated a reduction in SLC2A1 mRNA in patients with pathogenic variants of this gene, as well as in one patient with a pathogenic variant in SLC9A6, and in three for whom no candidate variant was identified. Thus, the clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Errores Innatos del Metabolismo de los Carbohidratos/genética , Pruebas Genéticas , Transportador de Glucosa de Tipo 1/genética , Humanos , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética
7.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34415322

RESUMEN

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Asunto(s)
Alelos , Variación Genética/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Antígenos de Histocompatibilidad Menor/genética , Trastornos del Neurodesarrollo/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Leucocitos Mononucleares/fisiología , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje
8.
J Inherit Metab Dis ; 44(2): 401-414, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32677093

RESUMEN

The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.


Asunto(s)
Anomalías Múltiples/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Distonía/genética , Enoil-CoA Hidratasa/genética , Enfermedad de Leigh/genética , Tioléster Hidrolasas/deficiencia , Valina/metabolismo , Encéfalo/diagnóstico por imagen , Preescolar , Distonía/diagnóstico , Enoil-CoA Hidratasa/deficiencia , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Internacionalidad , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/metabolismo , Imagen por Resonancia Magnética , Masculino , Redes y Vías Metabólicas/genética , Mutación , Fenotipo , Tasa de Supervivencia , Tioléster Hidrolasas/genética
9.
Clin Genet ; 95(5): 615-626, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30653653

RESUMEN

The congenital disorders of glycosylation (CDG) are defects in glycoprotein and glycolipid glycan synthesis and attachment. They affect multiple organ/systems, but non-specific symptoms render the diagnosis of the different CDG very challenging. Phosphomannomutase 2 (PMM2)-CDG is the most common CDG, but advances in genetic analysis have shown others to occur more commonly than previously thought. The present work reports the clinical and mutational spectrum of 25 non-PMM2 CDG patients. The most common clinical symptoms were hypotonia (80%), motor or psychomotor disability (80%) and craniofacial dysmorphism (76%). Based on their serum transferrin isoform profile, 18 were classified as CDG-I and 7 as CDG-II. Pathogenic variations were found in 16 genes (ALG1, ALG6, ATP6V0A2, B4GALT1, CCDC115, COG7, DOLK, DPAGT1, DPM1, GFPT1, MPI, PGM1, RFT1, SLC35A2, SRD5A3, and SSR4). Overall, 27 variants were identified, 12 of which are novel. The results highlight the importance of combining genetic and biochemical analyses for the early diagnosis of this heterogeneous group of disorders.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Fosfotransferasas (Fosfomutasas)/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , España
12.
Mov Disord ; 33(6): 992-999, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29644724

RESUMEN

BACKGROUND: Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. OBJECTIVES: The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. METHODS: The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. RESULTS: The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. CONCLUSION: De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Salud de la Familia , Femenino , Ácido Glutámico/farmacología , Glicina/farmacología , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Modelos Moleculares , Oocitos , Receptores de N-Metil-D-Aspartato/metabolismo , Transfección , Xenopus laevis
13.
Neuropediatrics ; 49(6): 408-413, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30304743

RESUMEN

Phosphomannomutase deficiency (PMM2-CDG) causes a cerebellar syndrome that has been evaluated using the International Cooperative Ataxia Rating Scale (ICARS). However, no particular dysarthria tests have been used. Speech ICARS subscore subjectively assesses fluency and clarity of speech with two items. Repetition of syllables, traditionally used for characterization of ataxic speech, was validated in early-onset ataxia conditions. We assess the validity of the PATA test (SCA Functional Index [SCAFI]) in PMM2-CDG patients.PATA rates from 20 patients were compared with a control population were and correlated with ICARS and neuroimaging.There was a difference between the PATA rate in patients and controls. PATA rate increased with age in controls. In patients, the improvement of PATA rate with age was not significant. In patients, the PATA rate was negatively correlated with the total ICARS score and the Speech ICARS subscore. Regarding neuroimaging, midsaggital vermis relative diameter was positively correlated with PATA results. These last differences were also significant when the results are corrected by age.PATA rate provides an easy measure for a quantitative assessment of dysarthria that may help clinicians to monitor patients' evolution in a regular consultation. It could also be used in PMM2-CDG clinical trials implementing ICARS speech subscore information.


Asunto(s)
Enfermedades Cerebelosas/diagnóstico , Trastornos Congénitos de Glicosilación/complicaciones , Disartria/diagnóstico , Fosfotransferasas (Fosfomutasas)/deficiencia , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Factores de Edad , Enfermedades Cerebelosas/etiología , Niño , Disartria/etiología , Femenino , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Adulto Joven
14.
Int J Mol Sci ; 19(2)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29470411

RESUMEN

Stroke-like episodes (SLE) occur in phosphomannomutase deficiency (PMM2-CDG), and may complicate the course of channelopathies related to Familial Hemiplegic Migraine (FHM) caused by mutations in CACNA1A (encoding CaV2.1 channel). The underlying pathomechanisms are unknown. We analyze clinical variables to detect risk factors for SLE in a series of 43 PMM2-CDG patients. We explore the hypothesis of abnormal CaV2.1 function due to aberrant N-glycosylation as a potential novel pathomechanism of SLE and ataxia in PMM2-CDG by using whole-cell patch-clamp, N-glycosylation blockade and mutagenesis. Nine SLE were identified. Neuroimages showed no signs of stroke. Comparison of characteristics between SLE positive versus negative patients' group showed no differences. Acute and chronic phenotypes of patients with PMM2-CDG or CACNA1A channelopathies show similarities. Hypoglycosylation of both CaV2.1 subunits (α1A and α2α) induced gain-of-function effects on channel gating that mirrored those reported for pathogenic CACNA1A mutations linked to FHM and ataxia. Unoccupied N-glycosylation site N283 at α1A contributes to a gain-of-function by lessening CaV2.1 inactivation. Hypoglycosylation of the α2δ subunit also participates in the gain-of-function effect by promoting voltage-dependent opening of the CaV2.1 channel. CaV2.1 hypoglycosylation may cause ataxia and SLEs in PMM2-CDG patients. Aberrant CaV2.1 N-glycosylation as a novel pathomechanism in PMM2-CDG opens new therapeutic possibilities.


Asunto(s)
Enfermedades Cerebelosas/complicaciones , Canalopatías/complicaciones , Fosfotransferasas (Fosfomutasas)/deficiencia , Accidente Cerebrovascular/complicaciones , Adolescente , Secuencia de Aminoácidos , Canales de Calcio/genética , Enfermedades Cerebelosas/diagnóstico por imagen , Canalopatías/diagnóstico por imagen , Niño , Preescolar , Electroencefalografía , Femenino , Glicosilación , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Fosfotransferasas (Fosfomutasas)/química , Fosfotransferasas (Fosfomutasas)/metabolismo , Accidente Cerebrovascular/diagnóstico por imagen , Tunicamicina/farmacología
15.
J Hum Genet ; 62(2): 185-189, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27535030

RESUMEN

The KCNQ2 gene codifies a subunit of the voltage-gated potassium M channel underlying the neuronal M-current. Classically, mutations in this gene have been associated with benign familial neonatal seizures, however, in recent years KCNQ2 mutations have been reported associated to early-onset epileptic encephalopathy. In this work, detailed familiar, clinical and genetic data were collected for 13 KCNQ2-positive patients revealed among a cohort of 80 epileptic pediatric probands from Spain who were analyzed through a targeted next-generation sequencing assay for 155 epilepsy-associated genes. This work shows for the first time the association between KCNQ2 mutations and startle attacks in 38% of patients, which opens the possibility to define electroclinical phenotypes associated to KCNQ2 mutations. It also demonstrates that KCNQ2 mutations contribute to an important percentage of Spanish patients with epilepsy. The study confirm the high genetic heterogeneity of this gene with 13 different mutations found, 10 of them novel and the better outcome of patients treated with sodium channel blockers.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Predisposición Genética a la Enfermedad , Canal de Potasio KCNQ2/genética , Reflejo de Sobresalto/genética , Secuencia de Bases , Familia , Humanos , Recién Nacido , Mutación , Fenotipo , Análisis de Secuencia de ADN , España
16.
Am J Hum Genet ; 89(5): 656-67, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22077971

RESUMEN

We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G > T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545 + 5G > A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins.


Asunto(s)
Proteínas Portadoras , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales , Mutación Missense , Proteínas de Saccharomyces cerevisiae , Aminoácido Oxidorreductasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromosomas Humanos Par 2/genética , Femenino , Células HeLa , Homocigoto , Humanos , Hipertensión/genética , Lactante , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Succinato Deshidrogenasa/metabolismo , Sulfurtransferasas/metabolismo , Ácido Tióctico/metabolismo , Transferasas/metabolismo
17.
Ann Neurol ; 71(4): 520-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22522443

RESUMEN

OBJECTIVE: Sepiapterin reductase deficiency (SRD) is an under-recognized levodopa-responsive disorder. We describe clinical, biochemical, and molecular findings in a cohort of patients with this treatable condition. We aim to improve awareness of the phenotype and available diagnostic and therapeutic strategies to reduce delayed diagnosis or misdiagnosis, optimize management, and improve understanding of pathophysiologic mechanisms. METHODS: Forty-three individuals with SRD were identified from 23 international medical centers. The phenotype and treatment response were assessed by chart review using a detailed standardized instrument and by literature review for cases for which records were unavailable. RESULTS: In most cases, motor and language delays, axial hypotonia, dystonia, weakness, oculogyric crises, and diurnal fluctuation of symptoms with sleep benefit become evident in infancy or childhood. Average age of onset is 7 months, with delay to diagnosis of 9.1 years. Misdiagnoses of cerebral palsy (CP) are common. Most patients benefit dramatically from levodopa/carbidopa, often with further improvement with the addition of 5-hydroxytryptophan. Cerebrospinal fluid findings are distinctive. Diagnosis is confirmed by mutation analysis and/or enzyme activity measurement in cultured fibroblasts. INTERPRETATION: Common, clinical findings of SRD, aside from oculogyric crises and diurnal fluctuation, are nonspecific and mimic CP with hypotonia or dystonia. Patients usually improve dramatically with treatment. Consequently, we recommend consideration of SRD not only in patients with levodopa-responsive motor disorders, but also in patients with developmental delays with axial hypotonia, and patients with unexplained or atypical presumed CP. Biochemical investigation of cerebrospinal fluid is the preferred method of initial investigation. Early diagnosis and treatment are recommended to prevent ongoing brain dysfunction.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Oxidorreductasas de Alcohol/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/genética , Edad de Inicio , Secuencia de Bases , Parálisis Cerebral/diagnóstico , Niño , Preescolar , Análisis Mutacional de ADN , Discapacidades del Desarrollo/tratamiento farmacológico , Diagnóstico Diferencial , Dopaminérgicos/uso terapéutico , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Trastornos del Movimiento/tratamiento farmacológico , Mutación , Neurotransmisores/análisis , Neurotransmisores/uso terapéutico
18.
Epilepsia ; 54(2): 239-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23350806

RESUMEN

PURPOSE: Pyridoxine-dependent epilepsy seizure (PDE; OMIM 266100) is a disorder associated with severe seizures that can be controlled pharmacologically with pyridoxine. In the majority of patients with PDE, the disorder is caused by the deficient activity of the enzyme α-aminoadipic semialdehyde dehydrogenase (antiquitin protein), which is encoded by the ALDH7A1 gene. The aim of this work was the clinical, biochemical, and genetic analysis of 12 unrelated patients, mostly from Spain, in an attempt to provide further valuable data regarding the wide clinical, biochemical, and genetic spectrum of the disease. METHODS: The disease was confirmed based on the presence of α-aminoadipic semialdehyde (α-AASA) in urine measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and pipecolic acid (PA) in plasma and/or cerebrospinal fluid (CSF) measured by high performance liquid chromatography (HPLC)/MS/MS and by sequencing analysis of messenger RNA (mRNA) and genomic DNA of ALDH7A1. KEY FINDINGS: Most of the patients had seizures in the neonatal period, but they responded to vitamin B6 administration. Three patients developed late-onset seizures, and most patients showed mild-to-moderate postnatal developmental delay. All patients had elevated PA and α-AASA levels, even those who had undergone pyridoxine treatment for several years. The clinical spectrum of our patients is not limited to seizures but many of them show associated neurologic dysfunctions such as muscle tone alterations, irritability, and psychomotor retardation. The mutational spectrum of the present patients included 12 mutations, five already reported (c.500A>G, c.919C>T, c.1429G>C c.1217_1218delAT, and c.1482-1G>T) and seven novel sequence changes (c.75C>T, c.319G>T, c.554_555delAA, c.757C>T, c.787 + 1G>T, c.1474T>C, c.1093-?_1620+?). Only one mutation, p.G477R (c.1429G>C), was recurrent; this was detected in four different alleles. Transcriptional profile analysis of one patient's lymphoblasts and ex vivo splicing analysis showed the silent nucleotide change c.75C>T to be a novel splicing mutation creating a new donor splice site inside exon 1. Antisense therapy of the aberrant mRNA splicing in a lymphoblast cell line harboring mutation c.75C>T was successful. SIGNIFICANCE: The present results broaden our knowledge of PDE, provide information regarding the genetic background of PDE in Spain, afford data of use when making molecular-based prenatal diagnosis, and provide a cellular proof-of concept for antisense therapy application.


Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/genética , Terapia Genética/métodos , Oligonucleótidos Antisentido/uso terapéutico , Deficiencia de Vitamina B 6/complicaciones , Aldehído Deshidrogenasa/genética , Línea Celular , Análisis Mutacional de ADN , Epilepsia/etiología , Exones/genética , Femenino , Humanos , Hiperlisinemias/orina , Lactante , Recién Nacido , Linfocitos/efectos de los fármacos , Masculino , Mutación/genética , Polimorfismo de Nucleótido Simple , Empalme del ARN , Sacaropina Deshidrogenasas/deficiencia , Sacaropina Deshidrogenasas/orina , Espectrometría de Masas en Tándem
19.
Orphanet J Rare Dis ; 18(1): 357, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974184

RESUMEN

BACKGROUND: Mucopolysaccharidosis (MPS) II is a rare, X-linked lysosomal storage disease. Approximately two-thirds of patients have central nervous system involvement with some demonstrating progressive cognitive impairment (neuronopathic disease). The natural history of cognitive and adaptive function in patients with MPS II is not well-defined. This 2-year, prospective, observational study evaluated the neurodevelopmental trajectories of boys with MPS II aged ≥ 2 years and < 18 years. RESULTS: Overall, 55 patients were enrolled. At baseline, mean (standard deviation [SD]) age was 5.60 (3.32) years; all patients were receiving intravenous idursulfase. Cognitive and adaptive function were assessed using the Differential Ability Scales, Second Edition (DAS-II) General Conceptual Ability (GCA) and the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) Adaptive Behavior Composite (ABC) scores, respectively. Baseline mean (SD) DAS-II GCA and VABS-II ABC scores were 78.4 (19.11) and 83.7 (14.22), respectively, indicating low cognitive function and moderately low adaptive behavior. Over 24 months, modest deteriorations in mean (SD) scores were observed for DAS-II GCA (-3.8 [12.7]) and VABS-II ABC (-2.0 [8.07]). Changes in DAS-II GCA scores varied considerably, and data suggested the existence of four potential patient subgroups: (1) patients with marked early impairment and rapid subsequent decline, (2) patients with marked early impairment then stabilization, (3) patients with mild early impairment then stabilization, and (4) patients without impairment who remained stable. Subgroup analyses revealed numerically greater DAS-II GCA score reductions from baseline in patients aged < 7 years at baseline (vs. those aged ≥ 7 years) and in patients with DAS-II GCA scores ≤ 70 at baseline (vs. those with scores > 70); between-group differences were nonsignificant. No clear subgroups or patterns were identified for individual changes in VABS-II ABC scores. In total, 49 patients (89.1%) reported ≥ 1 adverse event (AE) and nine patients (16.4%) reported serious AEs. CONCLUSIONS: Some patients with MPS II had rapid declines in cognitive ability, whereas others remained relatively stable after an initial decline. These insights provide a basis for more detailed analyses of different patient subgroups, which may enhance the definition and understanding of factors that influence cognitive and adaptive function in MPS II. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01822184. Registered retrospectively: April 2, 2013.


Asunto(s)
Mucopolisacaridosis II , Masculino , Niño , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Estudios Longitudinales , Adaptación Psicológica
20.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37463447

RESUMEN

The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Metabolismo de los Lípidos , Mutación , Aparato de Golgi/metabolismo , Lípidos , Fenotipo , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA