Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 29: 593-617, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24099088

RESUMEN

The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.


Asunto(s)
Micorrizas/fisiología , Plantas/microbiología , Micorrizas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Simbiosis
2.
Nature ; 583(7815): 271-276, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32612234

RESUMEN

Plant hormones coordinate responses to environmental cues with developmental programs1, and are fundamental for stress resilience and agronomic yield2. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways3. However, fundamental questions remain about how information from different pathways is integrated. Genetically, most phenotypes seem to be regulated by several hormones, but transcriptional profiling suggests that hormones trigger largely exclusive transcriptional programs4. We hypothesized that protein-protein interactions have an important role in phytohormone signal integration. Here, we experimentally generated a systems-level map of the Arabidopsis phytohormone signalling network, consisting of more than 2,000 binary protein-protein interactions. In the highly interconnected network, we identify pathway communities and hundreds of previously unknown pathway contacts that represent potential points of crosstalk. Functional validation of candidates in seven hormone pathways reveals new functions for 74% of tested proteins in 84% of candidate interactions, and indicates that a large majority of signalling proteins function pleiotropically in several pathways. Moreover, we identify several hundred largely small-molecule-dependent interactions of hormone receptors. Comparison with previous reports suggests that noncanonical and nontranscription-mediated receptor signalling is more common than hitherto appreciated.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Mapas de Interacción de Proteínas , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Reproducibilidad de los Resultados , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 119(11): e2112820119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254909

RESUMEN

SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Furanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Hidrolasas/genética , Piranos/farmacología , Arabidopsis/metabolismo , Plantones/genética , Plantones/metabolismo , Transducción de Señal
5.
Plant J ; 109(3): 508-522, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34743401

RESUMEN

Soil is a living ecosystem, the health of which depends on fine interactions among its abiotic and biotic components. These form a delicate equilibrium maintained through a multilayer network that absorbs certain perturbations and guarantees soil functioning. Deciphering the principles governing the interactions within soils is of critical importance for their management and conservation. Here, we focus on soil microbiota and discuss the complexity of interactions that impact the composition and function of soil microbiota and their interaction with plants. We discuss how physical aspects of soils influence microbiota composition and how microbiota-plant interactions support plant growth and responses to nutrient deficiencies. We predict that understanding the principles determining the configuration and functioning of soil microbiota will contribute to the design of microbiota-based strategies to preserve natural resources and develop more environmentally friendly agricultural practices.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Microbiota , Plantas/microbiología , Microbiología del Suelo , Rizosfera
6.
Plant J ; 109(6): 1559-1574, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953105

RESUMEN

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiología , Brachypodium/genética , Furanos , Lactonas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Piranos , Simbiosis
7.
Plant Cell Physiol ; 64(9): 984-995, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37548562

RESUMEN

The α/ß hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desarrollo de la Planta , Hidrolasas/metabolismo
8.
New Phytol ; 239(1): 29-46, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37145847

RESUMEN

Phosphate (Pi ) is indispensable for life on this planet. However, for sessile land plants it is poorly accessible. Therefore, plants have developed a variety of strategies for enhanced acquisition and recycling of Pi . The mechanisms to cope with Pi limitation as well as direct uptake of Pi from the substrate via the root epidermis are regulated by a conserved Pi starvation response (PSR) system based on a family of key transcription factors (TFs) and their inhibitors. Furthermore, plants obtain Pi indirectly through symbiosis with mycorrhiza fungi, which employ their extensive hyphal network to drastically increase the soil volume that can be explored by plants for Pi . Besides mycorrhizal symbiosis, there is also a variety of other interactions with epiphytic, endophytic, and rhizospheric microbes that can indirectly or directly influence plant Pi uptake. It was recently discovered that the PSR pathway is involved in the regulation of genes that promote formation and maintenance of AM symbiosis. Furthermore, the PSR system influences plant immunity and can also be a target of microbial manipulation. It is known for decades that the nutritional status of plants influences the outcome of plant-microbe interactions. The first molecular explanations for these observations are now emerging.


Asunto(s)
Micorrizas , Fosfatos , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Micorrizas/fisiología , Simbiosis , Plantas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Proc Natl Acad Sci U S A ; 117(35): 21757-21765, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817510

RESUMEN

An evolutionarily ancient plant hormone receptor complex comprising the α/ß-fold hydrolase receptor KARRIKIN INSENSITIVE 2 (KAI2) and the F-box protein MORE AXILLARY GROWTH 2 (MAX2) mediates a range of developmental responses to smoke-derived butenolides called karrikins (KARs) and to yet elusive endogenous KAI2 ligands (KLs). Degradation of SUPPRESSOR OF MAX2 1 (SMAX1) after ligand perception is considered to be a key step in KAR/KL signaling. However, molecular events which regulate plant development downstream of SMAX1 removal have not been identified. Here we show that Lotus japonicus SMAX1 is specifically degraded in the presence of KAI2 and MAX2 and plays an important role in regulating root and root hair development. smax1 mutants display very short primary roots and elongated root hairs. Their root transcriptome reveals elevated ethylene responses and expression of ACC Synthase 7 (ACS7), which encodes a rate-limiting enzyme in ethylene biosynthesis. smax1 mutants release increased amounts of ethylene and their root phenotype is rescued by treatment with ethylene biosynthesis and signaling inhibitors. KAR treatment induces ACS7 expression in a KAI2-dependent manner and root developmental responses to KAR treatment depend on ethylene signaling. Furthermore, in Arabidopsis, KAR-induced root hair elongation depends on ACS7 Thus, we reveal a connection between KAR/KL and ethylene signaling in which the KAR/KL signaling module (KAI2-MAX2-SMAX1) regulates the biosynthesis of ethylene to fine-tune root and root hair development, which are important for seedling establishment at the beginning of the plant life cycle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lotus/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/metabolismo , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/fisiología , Hidrolasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lotus/genética , Liasas/genética , Liasas/metabolismo , Organogénesis de las Plantas/genética , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos
10.
PLoS Genet ; 16(12): e1009249, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370251

RESUMEN

Karrikins (KARs), smoke-derived butenolides, are perceived by the α/ß-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) and thought to mimic endogenous, yet elusive plant hormones tentatively called KAI2-ligands (KLs). The sensitivity to different karrikin types as well as the number of KAI2 paralogs varies among plant species, suggesting diversification and co-evolution of ligand-receptor relationships. We found that the genomes of legumes, comprising a number of important crops with protein-rich, nutritious seed, contain two or more KAI2 copies. We uncover sub-functionalization of the two KAI2 versions in the model legume Lotus japonicus and demonstrate differences in their ability to bind the synthetic ligand GR24ent-5DS in vitro and in genetic assays with Lotus japonicus and the heterologous Arabidopsis thaliana background. These differences can be explained by the exchange of a widely conserved phenylalanine in the binding pocket of KAI2a with a tryptophan in KAI2b, which arose independently in KAI2 proteins of several unrelated angiosperms. Furthermore, two polymorphic residues in the binding pocket are conserved across a number of legumes and may contribute to ligand binding preferences. The diversification of KAI2 binding pockets suggests the occurrence of several different KLs acting in non-fire following plants, or an escape from possible antagonistic exogenous molecules. Unexpectedly, L. japonicus responds to diverse synthetic KAI2-ligands in an organ-specific manner. Hypocotyl growth responds to KAR1, KAR2 and rac-GR24, while root system development responds only to KAR1. This differential responsiveness cannot be explained by receptor-ligand preferences alone, because LjKAI2a is sufficient for karrikin responses in the hypocotyl, while LjKAI2a and LjKAI2b operate redundantly in roots. Instead, it likely reflects differences between plant organs in their ability to transport or metabolise the synthetic KLs. Our findings provide new insights into the evolution and diversity of butenolide ligand-receptor relationships, and open novel research avenues into their ecological significance and the mechanisms controlling developmental responses to divergent KLs.


Asunto(s)
Proteínas de Arabidopsis/genética , Furanos/metabolismo , Hidrolasas/genética , Hipocótilo/crecimiento & desarrollo , Lotus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Furanos/química , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/genética , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Hidrolasas/metabolismo , Hipocótilo/metabolismo , Lactonas/metabolismo , Ligandos , Lotus/genética , Análisis por Micromatrices , Filogenia , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/genética , Raíces de Plantas/metabolismo , Piranos/química
11.
Plant Cell Physiol ; 63(10): 1356-1365, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35894593

RESUMEN

Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with most land plants. The symbiosis is based on the exchange of nutrients: AMF receive photosynthetically fixed carbon from the plants and deliver mineral nutrients in return. Lipids are important players in the symbiosis. They act as components of the plant-derived membrane surrounding arbuscules, as carbon sources transferred from plants to AMF, as a major form of carbon storage in AMF and as triggers of developmental responses in AMF. In this review, we describe the role of lipids in arbuscular mycorrhizal symbiosis and AMF development.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Simbiosis , Hongos , Plantas/microbiología , Carbono , Reproducción , Lípidos , Raíces de Plantas/microbiología
12.
New Phytol ; 235(1): 126-140, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35313031

RESUMEN

Photomorphogenic remodelling of seedling growth is a key developmental transition in the plant life cycle. The α/ß-hydrolase signalling protein KARRIKIN-INSENSITIVE2 (KAI2), a close homologue of the strigolactone receptor DWARF14 (D14), is involved in this process, but it is unclear how the effects of KAI2 on development are mediated. Here, using a combination of physiological, pharmacological, genetic and imaging approaches in Arabidopsis thaliana (Heynh.) we show that kai2 phenotypes arise because of a failure to downregulate auxin transport from the seedling shoot apex towards the root system, rather than a failure to respond to light per se. We demonstrate that KAI2 controls the light-induced remodelling of the PIN-mediated auxin transport system in seedlings, promoting a reduction in PIN7 abundance in older tissues, and an increase of PIN1/PIN2 abundance in the root meristem. We show that removing PIN3, PIN4 and PIN7 from kai2 mutants, or pharmacological inhibition of auxin transport and synthesis, is sufficient to suppress most kai2 seedling phenotypes. We conclude that KAI2 regulates seedling morphogenesis by its effects on the auxin transport system. We propose that KAI2 is not required for the light-mediated changes in PIN gene expression but is required for the appropriate changes in PIN protein abundance within cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Furanos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Piranos , Plantones
13.
PLoS Genet ; 15(8): e1008327, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31465451

RESUMEN

Karrikins are smoke-derived compounds presumed to mimic endogenous signalling molecules (KAI2-ligand, KL), whose signalling pathway is closely related to that of strigolactones (SLs), important regulators of plant development. Both karrikins/KLs and SLs are perceived by closely related α/ß hydrolase receptors (KAI2 and D14 respectively), and signalling through both receptors requires the F-box protein MAX2. Furthermore, both pathways trigger proteasome-mediated degradation of related SMAX1-LIKE (SMXL) proteins, to influence development. It has previously been suggested in multiple studies that SLs are important regulators of root and root hair development in Arabidopsis, but these conclusions are based on phenotypes observed in the non-specific max2 mutants and by use of racemic-GR24, a mixture of stereoisomers that activates both D14 and KAI2 signalling pathways. Here, we demonstrate that the majority of the effects on Arabidopsis root development previously attributed to SL signalling are actually mediated by the KAI2 signalling pathway. Using mutants defective in SL or KL synthesis and/or perception, we show that KAI2-mediated signalling alone regulates root hair density and root hair length as well as root skewing, straightness and diameter, while both KAI2 and D14 pathways regulate lateral root density and epidermal cell length. We test the key hypothesis that KAI2 signals by a non-canonical receptor-target mechanism in the context of root development. Our results provide no evidence for this, and we instead show that all effects of KAI2 in the root can be explained by canonical SMAX1/SMXL2 activity. However, we do find evidence for non-canonical GR24 ligand-receptor interactions in D14/KAI2-mediated root hair development. Overall, our results demonstrate that the KAI2 signalling pathway is an important new regulator of root hair and root development in Arabidopsis and lay an important basis for research into a molecular understanding of how very similar and partially overlapping hormone signalling pathways regulate different phenotypic outputs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hidrolasas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidrolasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/biosíntesis , Plantas Modificadas Genéticamente , Transducción de Señal/genética
14.
Plant J ; 95(2): 219-232, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29687516

RESUMEN

Arbuscular mycorrhiza (AM) fungi establish symbiotic interactions with plants, providing the host plant with minerals, i.e. phosphate, in exchange for organic carbon. Arbuscular mycorrhiza fungi of the order Glomerales produce vesicles which store lipids as an energy and carbon source. Acyl-acyl carrier protein (ACP) thioesterases (Fat) are essential components of the plant plastid-localized fatty acid synthase and determine the chain length of de novo synthesized fatty acids. In addition to the ubiquitous FatA and FatB thioesterases, AM-competent plants contain an additional, AM-specific, FatM gene. Here, we characterize FatM from Lotus japonicus by phenotypically analyzing fatm mutant lines and by studying the biochemical function of the recombinant FatM protein. Reduced shoot phosphate content in fatm indicates compromised symbiotic phosphate uptake due to reduced arbuscule branching, and the fungus shows reduced lipid accumulation accompanied by the occurrence of smaller and less frequent vesicles. Lipid profiling reveals a decrease in mycorrhiza-specific phospholipid forms, AM fungal signature fatty acids (e.g. 16:1ω5, 18:1ω7 and 20:3) and storage lipids. Recombinant FatM shows preference for palmitoyl (16:0)-ACP, indicating that large amounts of 16:0 fatty acid are exported from the plastids of arbuscule-containing cells. Stable isotope labeling with [13 C2 ]acetate showed reduced incorporation into mycorrhiza-specific fatty acids in the fatm mutant. Therefore, colonized cells reprogram plastidial de novo fatty acid synthesis towards the production of extra amounts of 16:0, which is in agreement with previous results that fatty acid-containing lipids are transported from the plant to the fungus.


Asunto(s)
Metabolismo de los Lípidos , Lotus/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/fisiología , Tioléster Hidrolasas/fisiología , Ácidos Grasos/metabolismo , Lotus/microbiología , Lotus/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis/fisiología , Tioléster Hidrolasas/metabolismo
15.
Plant Cell Physiol ; 59(4): 673-690, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29425360

RESUMEN

Arbuscular mycorrhiza (AM) is an ancient symbiosis between land plants and fungi of the glomeromycotina that is widespread in the plant kingdom. AM improves plant nutrition, stress resistance and general plant performance, and thus represents a promising addition to sustainable agricultural practices. In return for delivering mineral nutrients, the obligate biotrophic AM fungi receive up to 20% of the photosynthetically fixed carbon from the plant. AM fungi colonize the inside of roots and form highly branched tree-shaped structures, called arbuscules, in cortex cells. The pair of the arbuscule and its host cell is considered the central functional unit of the symbiosis as it mediates the bidirectional nutrient exchange between the symbionts. The development and spread of AM fungi within the root is predominantly under the control of the host plant and depends on its developmental and physiological status. Intracellular accommodation of fungal structures is enabled by the remarkable plasticity of plant cells, which undergo drastic subcellular rearrangements. These are promoted and accompanied by cell-autonomous transcriptional reprogramming. AM development can be dissected into distinct stages using plant mutants. Progress in the application of laser dissection technology has allowed the assignment of transcriptional responses to specific stages and cell types. The first transcription factors controlling AM-specific gene expression and AM development have been discovered, and cis-elements required for AM-responsive promoter activity have been identified. An understanding of their connectivity and elucidation of transcriptional networks orchestrating AM development can be expected in the near future.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Micorrizas/crecimiento & desarrollo , Micorrizas/genética , Transcripción Genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal
16.
New Phytol ; 220(4): 1031-1046, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29806959

RESUMEN

Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.


Asunto(s)
Micorrizas/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Simbiosis/fisiología , Metaboloma , Micorrizas/genética , Plantas/genética , Plantas/microbiología
17.
New Phytol ; 217(3): 1240-1253, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29154441

RESUMEN

Different root types of plants are colonized by a myriad of soil microorganisms, including fungi, which influence plant health and performance. The distinct functional and metabolic characteristics of these root types may influence root type-inhabiting fungal communities. We performed internal transcribed spacer (ITS) DNA profiling to determine the composition of fungal communities in field-grown axial and lateral roots of maize (Zea mays) and in response to two different soil phosphate (P) regimes. In parallel, these root types were subjected to transcriptome profiling by RNA sequencing (RNA-Seq). We demonstrated that fungal communities were influenced by soil P levels in a manner specific to root types. Moreover, maize transcriptome sequencing revealed root type-specific shifts in cell wall metabolism and defense gene expression in response to high P. Furthermore, lateral roots specifically accumulated defense-related transcripts at high P levels. This observation was correlated with a shift in fungal community composition, including a reduction in colonization by arbuscular mycorrhizal fungi, as observed in ITS sequence data and microscopic evaluation of root colonization. Our findings suggest soil nutrient-dependent changes in functional niches within root systems and provide new insights into the interaction of individual root types with soil microbiota.


Asunto(s)
Hongos/clasificación , Fosfatos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Suelo/química , Transcriptoma/genética , Zea mays/genética , Zea mays/microbiología , Hongos/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Micorrizas/clasificación , Micorrizas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Zea mays/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 112(21): 6754-9, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947154

RESUMEN

Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling--although crucial for crop improvement--is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.


Asunto(s)
Glomeromycota/fisiología , Micorrizas/fisiología , Oryza/genética , Oryza/microbiología , Transcriptoma , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Hidroxibenzoatos/metabolismo , Minerales/metabolismo , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Supresión Genética , Simbiosis/genética , Simbiosis/fisiología
20.
Plant Physiol ; 166(1): 281-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25096975

RESUMEN

Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Magnoliopsida/microbiología , MicroARNs/metabolismo , Micorrizas/fisiología , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA