Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 145(18): 10275-10284, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115733

RESUMEN

Formamidinium lead triiodide (FAPbI3) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl2) has been used as an additive in FAPbI3. MDA2+ has been reported as incorporated into the perovskite lattice alongside Cl-. However, the precise function and role of MDA2+ remain uncertain. Here, we grow FAPbI3 single crystals from a solution containing MDACl2 (FAPbI3-M). We demonstrate that FAPbI3-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA2+ is not the direct cause of the enhanced material stability. Instead, MDA2+ degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI3 crystals grown from a solution containing HMTA (FAPbI3-H) replicate the enhanced α-phase stability of FAPbI3-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA+ is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H+). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H+ is selectively incorporated into the bulk of both FAPbI3-M and FAPbI3-H at ∼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.

2.
CrystEngComm ; 23(35): 6180-6190, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34588923

RESUMEN

In this work we use high-resolution synchrotron X-ray diffraction for electron density mapping, in conjunction with ab initio modelling, to study short O-H⋯O and O+-H⋯O- hydrogen bonds whose behaviour is known to be tuneable by temperature. The short hydrogen bonds have donor-acceptor distances in the region of 2.45 Šand are formed in substituted urea and organic acid molecular complexes of N,N'-dimethylurea oxalic acid 2 : 1 (1), N,N-dimethylurea 2,4-dinitrobenzoate 1 : 1 (2) and N,N-dimethylurea 3,5-dinitrobenzoic acid 2 : 2 (3). From the combined analyses, these complexes are found to fall within the salt-cocrystal continuum and exhibit short hydrogen bonds that can be characterised as both strong and electrostatic (1, 3) or very strong with a significant covalent contribution (2). An additional charge assisted component is found to be important in distinguishing the relatively uncommon O-H⋯O pseudo-covalent interaction from a typical strong hydrogen bond. The electron density is found to be sensitive to the extent of static proton transfer, presenting it as a useful parameter in the study of the salt-cocrystal continuum. From complementary calculated hydrogen atom potentials, we attribute changes in proton position to the molecular environment. Calculated potentials also show zero barrier to proton migration, forming an 'energy slide' between the donor and acceptor atoms. The better fundamental understanding of the short hydrogen bond in the 'zone of fluctuation' presented in a salt-cocrystal continuum, enabled by studies like this, provide greater insight into their related properties and can have implications in the regulation of pharmaceutical materials.

3.
Inorg Chem ; 59(19): 14245-14250, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32969646

RESUMEN

A correlation between oxygen site distributions and ionic conductivity has been established in the recently discovered family of oxide-ion conductors Ba3M2O8.5±Î´ (M = Nb, V, Mo, W). We rationalize this observation on the basis of structural insights gained from the first single-crystal neutron diffraction data collected for a member of this family, Ba3NbWO8.5, and theoretical considerations of bonding and O site energies.

4.
Phys Chem Chem Phys ; 19(48): 32216-32225, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29131205

RESUMEN

A detailed study of the thermal behaviour of atomic motions in the organic ferroelectric croconic acid is presented in the temperature range 5-300 K. Using high-resolution inelastic neutron scattering and first-principles electronic-structure calculations within the framework of density functional theory and a quasiharmonic phonon description of the material, we find that the frequencies of the well defined doublet in inelastic neutron scattering spectra associated with out-of-plane motions of hydrogen-bonded protons decrease monotonically with temperature indicating weakening of these bonding motifs and enhancement of proton motions. Theoretical mean-square displacements for these proton motions are within 5% of experimental values. A detailed analysis of this observable shows that it is unlikely that there is a facile proton transfer along the direction of ferroelectric polarization in the absence of an applied electric field. Calculations predict constrained thermal motion of proton along crystallographic lattice direction c retaining the hydrogen bond motif of the crystal at high temperature. Using the Berry-phase method, we have also calculated the spontaneous polarization of temperature dependent cell structures, and find that our computational model provides a satisfactory description of the anomalous and so far unexplained rise in bulk electric polarization with temperature. Correlating the thermal motion induced lattice strain with temperature dependent spontaneous polarizations, we conclude that increasing thermal strain with temperatures combined with constrained thermal motion along the hydrogen bond motif are responsible of this increase in ferroelectricity at high temperature.

5.
Phys Chem Chem Phys ; 19(13): 9064-9074, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28304035

RESUMEN

We apply a unique sequence of structural and dynamical neutron-scattering techniques, augmented with density-functional electronic-structure calculations, to establish the degree of polymorphism in an archetypal hydrogen-bonded system - crystalline formic acid. Using this combination of experimental and theoretical techniques, the hypothesis by Zelsmann on the coexistence of the ß1 and ß2 phases above 220 K is tested. Contrary to the postulated scenario of proton-transfer-driven phase coexistence, the emerging picture is one of a quantitatively different structural change over this temperature range, whereby the loosening of crystal packing promotes temperature-induced shearing of the hydrogen-bonded chains. The presented work, therefore, solves a fifty-year-old puzzle and provides a suitable framework for the use neutron-Compton-scattering techniques in the exploration of phase polymorphism in condensed matter.

6.
Angew Chem Int Ed Engl ; 55(40): 12499-502, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27600354

RESUMEN

Seven-membered lactones undergo selective SmI2 -H2 O-promoted radical cyclization to form substituted cyclooctanols. The products arise from an exo-mode of cyclization rather than the usual endo-attack employed in the few radical syntheses of cyclooctanes. The process is terminated by the quenching of a chiral benzylic samarium. A labeling experiment and neutron diffraction study have been used for the first time to probe the configuration and highly diastereoselective deuteration of a chiral organosamarium intermediate.

7.
J Synchrotron Radiat ; 22(3): 644-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931080

RESUMEN

Serial femtosecond crystallography (SFX) is an emerging method for data collection at free-electron lasers (FELs) in which single diffraction snapshots are taken from a large number of crystals. The partial intensities collected in this way are then combined in a scheme called Monte Carlo integration, which provides the full diffraction intensities. However, apart from having to perform this merging, the Monte Carlo integration must also average out all variations in crystal quality, crystal size, X-ray beam properties and other factors, necessitating data collection from thousands of crystals. Because the pulses provided by FELs running in the typical self-amplified spontaneous emission (SASE) mode of operation have very irregular, spiky spectra that vary strongly from pulse to pulse, it has been suggested that this is an important source of variation contributing to inaccuracies in the intensities, and that, by using monochromatic pulses produced through a process called self-seeding, fewer images might be needed for Monte Carlo integration to converge, resulting in more accurate data. This paper reports the results of two experiments performed at the Linac Coherent Light Source in which data collected in both SASE and self-seeded mode were compared. Importantly, no improvement attributable to the use of self-seeding was detected. In addition, other possible sources of variation that affect SFX data quality were investigated, such as crystal-to-crystal variations reflected in the unit-cell parameters; however, these factors were found to have no influence on data quality either. Possibly, there is another source of variation as yet undetected that affects SFX data quality much more than any of the factors investigated here.

8.
Phys Chem Chem Phys ; 16(47): 26234-9, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25363424

RESUMEN

First-principles molecular dynamics simulations and neutron-scattering experiments have been employed to investigate the structure and underlying vibrational motions in croconic acid as a function of temperature over the range 4-400 K. Calculated hydroxyl-bond distances were within 4% of the experimentally determined bond lengths. Temperature-dependent structures have been explored using large-scale molecular dynamics simulations. From the calculated radial distribution functions, it is found that medium-range order associated with O···H and O···O correlations are affected by an increase in temperature, yet the characteristic long-range layered structure of this material remains unaltered. Hydrogen-bond anharmonicity has been assessed from the molecular dynamics simulations, showing a red shift of ca. 50 cm(-1) of the O-H stretch frequency relative to quasi-harmonic results. This shift shows the importance of anharmonic corrections on hydrogen bonds in solid croconic acid.

9.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 9): 134-7, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25309161

RESUMEN

MgSeO4·7H2O is isostructural with the analogous sulfate, MgSO4·7H2O, consisting of isolated [Mg(H2O)6](2+) octa-hedra and [SeO4](2-) tetra-hedra, linked by O-H⋯O hydrogen bonds, with a single inter-stitial lattice water mol-ecule. As in the sulfate, the [Mg(H2O)6](2+) coordination octa-hedron is elongated along one axis due to the tetra-hedral coordination of the two apical water mol-ecules; these have Mg-O distances of ∼2.10 Å, whereas the remaining four trigonally coordinated water mol-ecules have Mg-O distances of ∼2.05 Å. The mean Se-O bond length is 1.641 Šand is in excellent agreement with other selenates. The unit-cell volume of MgSeO4·7H2O at 10 K is 4.1% larger than that of the sulfate at 2 K, although this is not uniform; the greater part of the expansion is along the a axis of the crystal.

10.
J Am Chem Soc ; 135(17): 6477-84, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23570580

RESUMEN

The high-temperature cubic form of bismuth oxide, δ-Bi2O3, is the best intermediate-temperature oxide-ionic conductor known. The most elegant way of stabilizing δ-Bi2O3 to room temperature, while preserving a large part of its conductivity, is by doping with higher valent transition metals to create wide solid-solutions fields with exceedingly rare and complex (3 + 3)-dimensional incommensurately modulated "hypercubic" structures. These materials remain poorly understood because no such structure has ever been quantitatively solved and refined, due to both the complexity of the problem and a lack of adequate experimental data. We have addressed this by growing a large (centimeter scale) crystal using a novel refluxing floating-zone method, collecting high-quality single-crystal neutron diffraction data, and treating its structure together with X-ray diffraction data within the superspace symmetry formalism. The structure can be understood as an "inflated" pyrochlore, in which corner-connected NbO6 octahedral chains move smoothly apart to accommodate the solid solution. While some oxide vacancies are ordered into these chains, the rest are distributed throughout a continuous three-dimensional network of wide δ-Bi2O3-like channels, explaining the high oxide-ionic conductivity compared to commensurately modulated phases in the same pseudobinary system.

11.
Inorg Chem ; 52(4): 2219-27, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23391136

RESUMEN

The new compound YbCu(4)Ga(8) was obtained as large single crystals in high yield from reactions run in liquid gallium. Preliminary investigations suggest that YbCu(4)Ga(8) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and lattice constants are a = b = 8.6529(4) Å and c = 5.3976(11) Å. However, a detailed single-crystal XRD revealed a tripling of the c axis and crystallizing in a new structure type with lattice constants of a = b = 8.6529(4) Å and c = 15.465(1) Å. The structural model was further confirmed by neutron diffraction measurements on high-quality single crystal. The crystal structure of YbCu(4)Ga(8) is composed of pseudo-Frank-Kasper cages occupying one ytterbium atom in each ring which are shared through the corner along the ab plane, resulting in a three-dimensional network. The magnetic susceptibility of YbCu(4)Ga(8) investigated in the temperature range 2-300 K showed Curie-Weiss law behavior above 100 K, and the experimentally measured magnetic moment indicates mixed-valent ytterbium. Electrical resistivity measurements show the metallic nature of the compound. At low temperatures, variation of ρ as a function of T indicates a possible Fermi-liquid state at low temperatures.

12.
Acta Crystallogr C ; 69(Pt 4): 324-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23579697

RESUMEN

Hexaaquamagnesium(II) sulfate pentahydrate, [Mg(H2O)6]SO4·5H2O, and hexaaquamagnesium(II) chromate(II) pentahydrate, [Mg(H2O)6][CrO4]·5H2O, are isomorphous, being composed of hexaaquamagnesium(II) octahedra, [Mg(H2O)6](2+), and sulfate (chromate) tetrahedral oxyanions, SO4(2-) (CrO4(2-)), linked by hydrogen bonds. There are two symmetry-inequivalent centrosymmetric octahedra: M1 at (0, 0, 0) donates hydrogen bonds directly to the tetrahedral oxyanion, T1, at (0.405, 0.320, 0.201), whereas the M2 octahedron at (0, 0, ½) is linked to the oxyanion via five interstitial water molecules. Substitution of Cr(VI) for S(VI) leads to a substantial expansion of T1, since the Cr-O bond is approximately 12% longer than the S-O bond. This expansion is propagated through the hydrogen-bonded framework to produce a 3.3% increase in unit-cell volume; the greatest part of this chemically induced strain is manifested along the b* direction. The hydrogen bonds in the chromate compound mitigate ~20% of the expected strain due to the larger oxyanion, becoming shorter (i.e. stronger) and more linear than in the sulfate analogue. The bifurcated hydrogen bond donated by one of the interstitial water molecules is significantly more symmetrical in the chromate analogue.

13.
Inorg Chem ; 51(6): 3613-24, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22360641

RESUMEN

The unusual uranium reaction system in which uranium(4+) and uranium(3+) hydrides interconvert by formal bimetallic reductive elimination and oxidative addition reactions, [(C(5)Me(5))(2)UH(2)](2) (1) ⇌ [(C(5)Me(5))(2)UH](2) (2) + H(2), was studied by employing multiconfigurational quantum chemical and density functional theory methods. 1 can act as a formal four-electron reductant, releasing H(2) gas as the byproduct of four H(2)/H(-) redox couples. The calculated structures for both reactants and products are in good agreement with the X-ray diffraction data on 2 and 1 and the neutron diffraction data on 1 obtained under H(2) pressure as part of this study. The interconversion of the uranium(4+) and uranium(3+) hydride species was calculated to be near thermoneutral (~-2 kcal/mol). Comparison with the unknown thorium analogue, [(C(5)Me(5))(2)ThH](2), shows that the thorium(4+) to thorium(3+) hydride interconversion reaction is endothermic by 26 kcal/mol.

14.
Materials (Basel) ; 15(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36363271

RESUMEN

Multifunctional physical properties are usually a consequence of a rich electronic-structural interplay. To advance our understanding in this direction, we reinvestigate the structural properties of the LaPdSb and CePdSb intermetallic compounds using single-crystal neutron and X-ray diffraction. We establish that both compounds can be described by the non-centrosymmetric space group P63mc, where the Pd/Sb planes are puckered and show ionic order rather than ionic disorder as was previously proposed. In particular, at 300 K, the (h, k, 10)-layer contains diffuse scattering features consistent with the Pd/Sb puckered layers. The experimental results are further rationalized within the framework of DFT and DFT+ embedded DMFT methods, which confirm that a puckered structure is energetically more favorable. We also find strong correspondence between puckering strength and band topology. Namely, strong puckering removes the bands and, consequently, the Fermi surface pockets at the M point. In addition, the Pd-d band character is reduced with puckering strength. Thus, these calculations provide further insights into the microscopic origin of the puckering, especially the correspondence between the band's character, Fermi surfaces, and the strength of the puckering.

15.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431543

RESUMEN

Iron phosphate materials have attracted a lot of attention due to their potential as cathode materials for lithium-ion rechargeable batteries. It has been shown that lithium insertion or extraction depends on the Fe mixed valence and reduction or oxidation of the Fe ions' valences. In this paper, we report a new synthesis method for the Fe3(PO3OH)4(H2O)4 mixed valence iron phosphate. In addition, we perform temperature-dependent measurements of structural and physical properties in order to obtain an understanding of electronic-structural interplay in this compound. Scanning electron microscope images show needle-like single crystals of 50 µm to 200 µm length which are stable up to approximately 200 °C, as revealed by thermogravimetric analysis. The crystal structure of Fe3(PO3OH)4(H2O)4 single crystals has been determined in the temperature range of 90 K to 470 K. A monoclinic isostructural phase transition was found at ~213 K, with unit cell volume doubling in the low temperature phase. While the local environment of the Fe2+ ions does not change significantly across the structural phase transition, small antiphase rotations occur for the Fe3+ octahedra, implying some kind of electronic order. These results are corroborated by first principle calculations within density functional theory, which also point to ordering of the electronic degrees of freedom across the transition. The structural phase transition is confirmed by specific heat measurements. Moreover, hints of 3D antiferromagnetic ordering appear below ~11 K in the magnetic susceptibility measurements. Room temperature visible light absorption is consistent with the Fe2+/Fe3+ mixed valence.

16.
J Am Chem Soc ; 133(29): 11058-61, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21711029

RESUMEN

Diborane(6) as a H-bridged dimer of monoborane can be converted cleanly by two-electron reduction into diborane(6) dianion, which is isoelectronic with ethane, through B-B σ-bond formation when each boron atom has a bulky ligand on it. The existence of the B-B σ bond is supported by the X-ray molecular structure [B-B bond length of 1.924(3) Å], NMR studies, magnetic susceptibility measurements, and DFT calculations. Stepwise hydride abstraction reactions of the diborane(6) dianion produce the corresponding H-bridged diborane(5) anion and doubly H-bridged diborane(4) without B-B bond scission.

17.
Chemistry ; 17(37): 10259-71, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21837711

RESUMEN

Tetrasodium p-sulfonatocalix[4]arene exists as a hydrate with approximately 14 water molecules and has three polymorphic modifications, all of which contain a water molecule in the molecular cavity that is engaged in OH···π interactions. Single-crystal neutron structures are reported for two of these three forms and reveal a "compressed" water molecule with short OH bonds. Partial atomic charges and hardness analysis (PACHA) calculations based on the neutron coordinates give an OH···π interaction energy of 6.9-7.5 kJ mol(-1). The PACHA analysis also reveals the dominance of the charge-assisted hydrogen bonds from the Na(+)-coordinated water molecules. The instability of the crystal towards dehydration can be traced to an uncoordinated lattice water site. The remarkable calixarene-Na(+)-hydrate motif is conserved almost unchanged across all three polymorphs. A single-crystal neutron structure is also reported for pentasodium p-sulfonatocalix[4]arene·12H(2)O, which exhibits an intracavity water molecule that is engaged in both OH···π and OH···O hydrogen bonding. The shorter covalent bond to the hydrogen atom that forms the interaction with the aromatic ring is again apparent.

18.
J Am Chem Soc ; 132(26): 8998-9006, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20552958

RESUMEN

The cubic intermetallic phase Y(4)Mn(1-x)Ga(12-y)Ge(y) (x = 0-0.26, y = 0-4.0) has been isolated from a molten gallium flux reaction. It presents a rare example of a system where ferromagnetism can be induced by controlling the vacancies of the magnetic centers. The Y(4)PdGa(12) type crystal structure is made up of a corner-sharing octahedral network of Ga and Ge atoms with Mn atoms at the centers of half the octahedra and Y atoms in the voids. At the highest Ge concentration, y = 4.0, the Mn site is nearly fully occupied, x = 0.05, and the samples are paramagnetic. At a lower Ge concentration, y = 1.0, Mn deficiency develops with x = 0.10. Surprisingly, strong ferromagnetism is observed with T(c) = 223 K. When Ge is excluded, y = 0, Mn is substantially deficient at x = 0.26 and ferromagnetism is maintained with a T(c) of approximately 160 K. In addition, a 6-fold modulated superstructure appears owing to an ordered slab-like segregation of Mn atoms and vacancies. Corresponding bond distortions propagate throughout the octahedral Ga network. Structure-property relationships are examined with X-ray and neutron diffraction, magnetic susceptibility, and electrical resistivity measurements.

19.
Inorg Chem ; 49(24): 11395-402, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21090626

RESUMEN

The neutron and X-ray structures of [Na(15-crown-5)][BH(4)] and [Na(15-crown-5)][AlH(4)], respectively, are reported, along with a topological analysis of their DFT-computed charge densities that explores the bonding between the anionic complex hydride [EH(4)](-) (E = B, Al) and the counterion [Na(15-crown-5)](+). In each case, the interaction is weak and mainly electrostatic in nature; however, notable differences are observed in the manner in which [BH(4)](-) and [AlH(4)](-) bind to the metal, which explains their different coordination modes. A range of unconventional E-H···H-C contacts is revealed to play an important role in the overall bonding and crystal packing of both complexes. These interactions can be classified as weak dihydrogen bonds based on the atoms in molecules approach.

20.
R Soc Open Sci ; 7(7): 200776, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32874662

RESUMEN

In this work, we have determined the structures of lithium methanesulfonate, Li(CH3SO3), and potassium methanesulfonate, K(CH3SO3), and analysed their vibrational spectra. The lithium salt crystallizes in the monoclinic space group C2/m with two formula units in the primitive cell. The potassium salt is more complex, crystallizing in I4/m with 12 formula units in the primitive cell. The lithium ion is fourfold coordinated in a distorted tetrahedron, while the potassium salt exhibits three types of coordination: six-, seven- and ninefold. Vibrational spectroscopy of the compounds (including the 6Li and 7Li isotopomers) confirms that the correlation previously found, that in the infrared spectra there is a clear distinction between coordinated and not coordinated forms of the methanesulfonate ion, is also valid here. The lithium salt shows a clear splitting of the asymmetric S-O stretch mode, indicating a bonding interaction, while there is no splitting in the spectrum of the potassium salt, consistent with a purely ionic material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA