Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 456(7220): 395-9, 2008 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19020621

RESUMEN

The simplest animal eyes are eyespots composed of two cells only: a photoreceptor and a shading pigment cell. They resemble Darwin's 'proto-eyes', considered to be the first eyes to appear in animal evolution. Eyespots cannot form images but enable the animal to sense the direction of light. They are characteristic for the zooplankton larvae of marine invertebrates and are thought to mediate larval swimming towards the light. Phototaxis of invertebrate larvae contributes to the vertical migration of marine plankton, which is thought to represent the biggest biomass transport on Earth. Yet, despite its ecological and evolutionary importance, the mechanism by which eyespots regulate phototaxis is poorly understood. Here we show how simple eyespots in marine zooplankton mediate phototactic swimming, using the marine annelid Platynereis dumerilii as a model. We find that the selective illumination of one eyespot changes the beating of adjacent cilia by direct cholinergic innervation resulting in locally reduced water flow. Computer simulations of larval swimming show that these local effects are sufficient to direct the helical swimming trajectories towards the light. The computer model also shows that axial rotation of the larval body is essential for phototaxis and that helical swimming increases the precision of navigation. These results provide, to our knowledge, the first mechanistic understanding of phototaxis in a marine zooplankton larva and show how simple eyespots regulate it. We propose that the underlying direct coupling of light sensing and ciliary locomotor control was a principal feature of the proto-eye and an important landmark in the evolution of animal eyes.


Asunto(s)
Anélidos/fisiología , Anélidos/efectos de la radiación , Luz , Locomoción/efectos de la radiación , Visión Ocular/fisiología , Visión Ocular/efectos de la radiación , Zooplancton/fisiología , Zooplancton/efectos de la radiación , Animales , Anélidos/citología , Anélidos/crecimiento & desarrollo , Cilios/fisiología , Cilios/efectos de la radiación , Simulación por Computador , Ojo/citología , Ojo/efectos de la radiación , Larva/citología , Larva/fisiología , Larva/efectos de la radiación , Células Fotorreceptoras de Invertebrados/fisiología , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Receptores Nicotínicos/metabolismo , Natación/fisiología , Zooplancton/citología , Zooplancton/crecimiento & desarrollo
2.
Evodevo ; 1(1): 14, 2010 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-21190549

RESUMEN

BACKGROUND: The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the 'new phylogeny' placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. RESULTS: We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila, a six3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids. In insects, onychophorans and Platynereis, the otx+ region instead harbours the eye anlagen, which thus occupy a more posterior position. CONCLUSIONS: These observations indicate that the annelid, onychophoran and arthropod head develops from a conserved anterior-posterior sequence of six3+ and otx+ regions. The six3+ anterior pole of the arthropod head and brain accordingly lies in an anterior-median embryonic region and, in consequence, the optic lobes do not represent the tip of the neuraxis. These results support the hypothesis that the last common ancestor of annelids and arthropods already possessed neurosecretory centres in the most anterior region of the brain. In light of its broad evolutionary conservation in protostomes and, as previously shown, in deuterostomes, the six3-otx head patterning system may be universal to bilaterian animals.

3.
Cell ; 129(7): 1389-400, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17604726

RESUMEN

Neurosecretory control centers form part of the forebrain in many animal phyla, including vertebrates, insects, and annelids. The evolutionary origin of these centers is largely unknown. To identify conserved, and thus phylogenetically ancient, components of neurosecretory brain centers, we characterize and compare neurons that express the prohormone vasotocin (vasopressin/oxytocin)-neurophysin in the developing forebrain of the annelid Platynereis dumerilii and of the zebrafish. These neurons express the same tissue-restricted microRNA, miR-7, and conserved, cell-type-specific combinations of transcription factors (nk2.1, rx, and otp) that specify their identity, as evidenced by the specific requirement of zebrafish rx3 for vasotocin-neurophysin expression. MiR-7 also labels another shared population of neurons containing RFamides. Since the vasotocinergic and RFamidergic neurons appear to be directly sensory in annelid and fish, we propose that cell types with dual sensory-neurosecretory properties were the starting point for the evolution of neurosecretory brain centers in Bilateria.


Asunto(s)
Anélidos/fisiología , Evolución Biológica , Hipotálamo/metabolismo , Neuronas Aferentes/metabolismo , Sistemas Neurosecretores/metabolismo , Pez Cebra/fisiología , Animales , Anélidos/anatomía & histología , Biomarcadores/metabolismo , Secuencia Conservada/genética , Evolución Molecular , Hipotálamo/ultraestructura , MicroARNs/genética , Microscopía Electrónica de Transmisión , Neuronas Aferentes/ultraestructura , Neuropéptidos/metabolismo , Neurosecreción/fisiología , Sistemas Neurosecretores/ultraestructura , Especificidad de la Especie , Factores de Transcripción/genética , Vasotocina/metabolismo , Pez Cebra/anatomía & histología
4.
Mamm Genome ; 15(6): 424-32, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15181535

RESUMEN

One of the advantages of N-ethyl- N-nitrosourea (ENU)-induced mutagenesis is that, after randomly causing point mutations, a variety of alleles can be generated in genes leading to diverse phenotypes. For example, transcription factor AP-2alpha ( Tcfap2a) null homozygote mice show a large spectrum of developmental defects, among them missing middle ear bones and tympanic ring. This is the usual occurrence, where mutations causing middle ear anomalies usually coincide with other abnormalities. Using ENU-induced mutagenesis, we discovered a new dominant Tcfap2a mutant named Doarad ( Dor) that has a missense mutation in the PY motif of its transactivation domain, leading to a misshapen malleus, incus, and stapes without any other observable phenotype. Dor homozygous mice die perinatally, showing prominent abnormal facial structures and ocular defects. In vitro assays suggest that this mutation causes a "gain of function" in the transcriptional activation of AP-2alpha. These mice enable us to address more specifically the developmental role of Tcfap2a in the eye and middle ear and are the first report of a mutation in a gene specifically causing middle ear abnormalities, leading to conductive hearing loss.


Asunto(s)
Proteínas de Unión al ADN/genética , Oído Medio/anomalías , Anomalías del Ojo/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Quimera , Mapeo Cromosómico , Genes Letales , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Factor de Transcripción AP-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA