Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chem Rev ; 123(7): 3543-3624, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724544

RESUMEN

The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.

2.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717626

RESUMEN

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

3.
Nano Lett ; 23(24): 11975-11981, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38079425

RESUMEN

Multiple exciton physics in semiconductor nanocrystals play an important role in optoelectronic devices. This work investigates radially alloyed CdZnSe/CdS nanocrystals with suppressed Auger recombination due to the spatial separation of carriers, which also underpins their performance in optical gain and scintillation experiments. Due to suppressed Auger recombination, the biexciton lifetime is greater than 10 ns, much longer than most nanocrystals. The samples show optical gain, amplified spontaneous emission, and lasing at thresholds <2 excitons per particle. They also show broad gain bandwidth (>500 meV) encompassing 4 amplified spontaneous emission bands. Similarly enabled by slowed multiple exciton relaxation, the samples display strong performance in scintillating films under X-ray illumination. The CdZnSe/CdS samples have fast radioluminescence rise (<80 ps) and decay times (<5 ns), light yields up to 6700 photons·MeV-1, and the demonstrated capacity for incorporation into large area films for scintillation imaging.

4.
Nano Lett ; 23(14): 6482-6488, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37399282

RESUMEN

As abnormal acidic pH symbolizes dysfunctions of cells, it is highly desirable to develop pH-sensitive luminescent materials for diagnosing disease and imaging-guided therapy using high-energy radiation. Herein, we explored near-infrared-emitting Cr-doped zinc gallate ZnGa2O4 nanoparticles (NPs) in colloidal solutions with different pH levels under X-ray excitation. Ultrasmall NPs were synthesized via a facile hydrothermal method by controlling the addition of ammonium hydroxide precursor and reaction time, and structural characterization revealed Cr dopants on the surface of NPs. The synthesized NPs exhibited different photoluminescence and radioluminescence mechanisms, confirming the surface distribution of activators. It was observed that the colloidal NPs emit pH-dependent radioluminescence in a linear relationship, and the enhancement reached 4.6-fold when pH = 4 compared with the colloidal NPs in the neutral solution. This observation provides a strategy for developing new biomaterials by engineering activators on the nanoparticle surfaces for potential pH-sensitive imaging and imaging-guided therapy using high-energy radiation.

5.
Nano Lett ; 23(7): 2677-2686, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36917456

RESUMEN

MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.

6.
Nano Lett ; 22(23): 9275-9282, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36450036

RESUMEN

Relaxor ferroelectrics have been intensely studied for decades based on their unique electromechanical responses which arise from local structural heterogeneity involving polar nanoregions or domains. Here, we report first studies of the ultrafast dynamics and reconfigurability of the polarization in freestanding films of the prototypical relaxor 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT) by probing its atomic-scale response via femtosecond-resolution, electron-scattering approaches. By combining these structural measurements with dynamic phase-field simulations, we show that femtosecond light pulses drive a change in both the magnitude and direction of the polarization vector within polar nanodomains on few-picosecond time scales. This study defines new opportunities for dynamic reconfigurable control of the polarization in nanoscale relaxor ferroelectrics.


Asunto(s)
Electrones
7.
Nat Mater ; 20(5): 618-623, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33398119

RESUMEN

Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis1, quantum materials2 and molecular optoelectronics3. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites4 via femtosecond resolution diffuse X-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally distorted structure and reveals radially expanding nanometre-scale strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and shape of this polaronic distortion are obtained, providing direct insights into the dynamic structural distortions that occur in these materials5-9. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the optoelectronic functionality of the hybrid perovskites.

8.
Nano Lett ; 21(8): 3540-3547, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33872014

RESUMEN

Investigating the impact of nanoscale heterogeneity on heat transport requires a spatiotemporal probe of temperature on the length and time scales intrinsic to heat navigating nanoscale defects. Here, we use stroboscopic optical scattering microscopy to visualize nanoscale heat transport in disordered films of gold nanocrystals. We find that heat transport appears subdiffusive at the nanoscale. Finite element simulations show that tortuosity of the heat flow underlies the subdiffusive transport, owing to a distribution of nonconductive voids. Thus, while heat travels diffusively through contiguous regions of the film, the tortuosity causes heat to navigate circuitous pathways that make the observed mean-squared expansion of an initially localized temperature distribution appear subdiffusive on length scales comparable to the voids. Our approach should be broadly applicable to uncover the impact of both designed and unintended heterogeneities in a wide range of materials and devices that can affect more commonly used spatially averaged thermal transport measurements.


Asunto(s)
Calor , Nanopartículas , Oro , Temperatura
9.
Nano Lett ; 20(9): 6459-6465, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787166

RESUMEN

We propose and demonstrate construction of highly uniform, multilayered superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using liquid interface self-assembly. These NPLs are sequentially deposited onto a solid substrate into slabs having monolayer-precise thickness across tens of cm2 areas. Because of near-unity surface coverage and excellent uniformity, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin film having 6 NPL layers, corresponding to a mere 42 nm thickness. Furthermore, systematic studies on optical gain of these NPL superstructures having thicknesses ranging from 6 to 15 layers revealed the gradual reduction in gain threshold with increasing number of layers, along with a continuous spectral shift of the ASE peak (∼18 nm). These observations can be explained by the change in the optical mode confinement factor with the NPL waveguide thickness and propagation wavelength. This bottom-up construction technique for thickness-tunable, three-dimensional NPL superstructures can be used for large-area device fabrication.

10.
Nano Lett ; 20(1): 145-151, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31746607

RESUMEN

Multiferroic BiFeO3 (BFO) films with spontaneously formed periodic stripe domains can generate above-gap open circuit voltages under visible light illumination; nevertheless the underlying mechanism behind this intriguing optoelectronic response has not been understood to date. Here, we make contact-free measurements of light-induced currents in epitaxial BFO films via detecting terahertz radiation emanated by these currents, enabling a direct probe of the intrinsic charge separation mechanisms along with quantitative measurements of the current amplitudes and their directions. In the periodic stripe samples, we find that the net photocurrent is dominated by the charge separation across the domain walls, whereas in the monodomain samples the photovoltaic response arises from a bulk shift current associated with the non-centrosymmetry of the crystal. The peak current amplitude driven by the charge separation at the domain walls is found to be 2 orders of magnitude higher than the bulk shift current response, indicating the prominent role of domain walls acting as nanoscale junctions to efficiently separate photogenerated charges in the stripe domain BFO films. These findings show that domain-wall-engineered BFO thin films offer exciting prospects for ferroelectric-based optoelectronics, as well as bias-free strong terahertz emitters.

11.
Nano Lett ; 19(1): 277-282, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30539638

RESUMEN

Modal gain coefficient is a key figure of merit for a laser material. Previously, net modal gain coefficients larger than a few thousand cm-1 were achieved in II-VI and III-V semiconductor gain media, but this required operation at cryogenic temperatures. In this work, using pump-fluence-dependent variable-stripe-length measurements, we show that colloidal CdSe nanoplatelets enable giant modal gain coefficients at room temperature up to 6600 cm-1 under pulsed optical excitation. Furthermore, we show that exceptional gain performance is common to the family of CdSe nanoplatelets, as shown by examining samples having different vertical thicknesses and lateral areas. Overall, colloidal II-VI nanoplatelets with superior optical gain properties are promising for a broad range of applications, including high-speed light amplification and loss compensation in plasmonic photonic circuits.

12.
Nano Lett ; 19(7): 4297-4305, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185570

RESUMEN

We proposed and showed strongly orientation-controlled Förster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid-air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm2. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole-dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d-4 regardless of the specific NPL orientation. Our FRET model, which is based on the original Förster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.

13.
Nanoscale Horiz ; 9(10): 1756-1765, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39045702

RESUMEN

Colloidal quantum dots (QDs) offer high color purity essential to high-quality liquid crystal displays (LCDs), which enables unprecedented levels of color enrichment in LCD-TVs today. However, for LCDs requiring polarized backplane illumination in operation, highly polarized light generation using inherently isotropic QDs remains a fundamental challenge. Here, we show strongly polarized color conversion of isotropic QDs coupled to Fano resonances of v-grooved surfaces compatible with surface-normal LED illumination for next-generation QD-TVs. This architecture overcomes the critically oblique excitation of surface plasmon coupled emission by using v-shapes imprinted on the backlight unit (BLU). With isotropic QDs coated on the proposed v-BLU surface, we experimentally measured a far-field polarization contrast ratio of ∼10. Full electromagnetic solution shows Fano line-shape transmission in transverse magnetic polarization allowing for high transmission as an indication for forward-scattering configuration. Of these QDs coupled to the surface plasmon-polariton modes, we observed strong modifications in their emission kinetics revealed by time-resolved photoluminescence spectroscopy and via dipole orientations identified by back focal plane imaging. This collection of findings indicates conclusively that these isotropic QDs are forced to radiate in a linearly polarized state from the patterned planar surface under surface-normal excitation. For next-generation QD-TVs, the proposed polarized color-converting isotropic QDs on such v-BLUs can be deployed in bendable electronic displays.

14.
Nat Commun ; 15(1): 4274, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769114

RESUMEN

Efficient, fast, and robust scintillators for ionizing radiation detection are crucial in various fields, including medical diagnostics, defense, and particle physics. However, traditional scintillator technologies face challenges in simultaneously achieving optimal performance and high-speed operation. Herein we introduce colloidal quantum shell heterostructures as X-ray and electron scintillators, combining efficiency, speed, and durability. Quantum shells exhibit light yields up to 70,000 photons MeV-1 at room temperature, enabled by their high multiexciton radiative efficiency thanks to long Auger-Meitner lifetimes (>10 ns). Radioluminescence is fast, with lifetimes of 2.5 ns and sub-100 ps rise times. Additionally, quantum shells do not exhibit afterglow and maintain stable scintillation even under high X-ray doses (>109 Gy). Furthermore, we showcase quantum shells for X-ray imaging achieving a spatial resolution as high as 28 line pairs per millimeter. Overall, efficient, fast, and durable scintillation make quantum shells appealing in applications ranging from ultrafast radiation detection to high-resolution imaging.

15.
Adv Mater ; 36(35): e2405294, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38984494

RESUMEN

Adaptive networks can sense and adjust to dynamic environments to optimize their performance. Understanding their nanoscale responses to external stimuli is essential for applications in nanodevices and neuromorphic computing. However, it is challenging to image such responses on the nanoscale with crystallographic sensitivity. Here, the evolution of nanodomain networks in (PbTiO3)n/(SrTiO3)n superlattices (SLs) is directly visualized in real space as the system adapts to ultrafast repetitive optical excitations that emulate controlled neural inputs. The adaptive response allows the system to explore a wealth of metastable states that are previously inaccessible. Their reconfiguration and competition are quantitatively measured by scanning x-ray nanodiffraction as a function of the number of applied pulses, in which crystallographic characteristics are quantitatively assessed by assorted diffraction patterns using unsupervised machine-learning methods. The corresponding domain boundaries and their connectivity are drastically altered by light, holding promise for light-programable nanocircuits in analogy to neuroplasticity. Phase-field simulations elucidate that the reconfiguration of the domain networks is a result of the interplay between photocarriers and transient lattice temperature. The demonstrated optical control scheme and the uncovered nanoscopic insights open opportunities for the remote control of adaptive nanoscale domain networks.

16.
Nat Phys ; 20(1): 47-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38261834

RESUMEN

Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr3. Our results indicate a stronger coupling in FAPbBr3 than CsPbBr3. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.

17.
Science ; 382(6668): 299-305, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37856614

RESUMEN

Understanding the ultrafast excitation and transport dynamics of plasmon-driven hot carriers is critical to the development of optoelectronics, photochemistry, and solar-energy harvesting. However, the ultrashort time and length scales associated with the behavior of these highly out-of-equilibrium carriers have impaired experimental verification of ab initio quantum theories. Here, we present an approach to studying plasmonic hot-carrier dynamics that analyzes the temporal waveform of coherent terahertz bursts radiated by photo-ejected hot carriers from designer nano-antennas with a broken symmetry. For ballistic carriers ejected from gold antennas, we find an ~11-femtosecond timescale composed of the plasmon lifetime and ballistic transport time. Polarization- and phase-sensitive detection of terahertz fields further grant direct access to their ballistic transport trajectory. Our approach opens explorations of ultrafast carrier dynamics in optically excited nanostructures.

18.
Adv Mater ; 35(44): e2306029, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611614

RESUMEN

Domain switching is crucial for achieving desired functions in ferroic materials that are used in various applications. Fast control of domains at sub-nanosecond timescales remains a challenge despite its potential for high-speed operation in random-access memories, photonic, and nanoelectronic devices. Here, ultrafast laser excitation is shown to transiently melt and reconfigure ferroelectric stripe domains in multiferroic bismuth ferrite on a timescale faster than 100 picoseconds. This dynamic behavior is visualized by picosecond- and nanometer-resolved X-ray diffraction and time-resolved X-ray diffuse scattering. The disordering of stripe domains is attributed to the screening of depolarization fields by photogenerated carriers resulting in the formation of charged domain walls, as supported by phase-field simulations. Furthermore, the recovery of disordered domains exhibits subdiffusive growth on nanosecond timescales, with a non-equilibrium domain velocity reaching up to 10 m s-1 . These findings present a new approach to image and manipulate ferroelectric domains on sub-nanosecond timescales, which can be further extended into other complex photoferroic systems to modulate their electronic, optical, and magnetic properties beyond gigahertz frequencies. This approach could pave the way for high-speed ferroelectric data storage and computing, and, more broadly, defines new approaches for visualizing the non-equilibrium dynamics of heterogeneous and disordered materials.

19.
Opt Express ; 20(23): 25255-66, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23187342

RESUMEN

We report a large-area, semi-transparent, light-sensitive nanocrystal skin (LS-NS) platform consisting of single monolayer colloidal nanocrystals. LS-NS devices, which were fabricated over areas up to 48 cm(2) using spray-coating and several cm-squares using dip-coating, are operated on the principle of photogenerated potential buildup, unlike the conventional charge collection. Implementing proof-of-concept devices using CdTe nanocrystals with ligand removal, we observed a substantial sensitivity enhancement factor of ~73%, accompanied with a 3-fold faster response time (<100 ms). With fully sealed nanocrystal monolayers, LS-NS is found to be highly stable under ambient conditions, promising for low-cost large-area UV/visible sensing in windows and facades of smart buildings.

20.
Adv Mater ; 34(44): e2202709, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36062547

RESUMEN

Interplay between structural and photophysical properties of metal halide perovskites is critical to their utility in optoelectronics, but there is limited understanding of lattice response upon photoexcitation. Here, 2D perovskites butylammonium lead iodide, (BA)2 PbI4 , and phenethylammonium lead iodide, (PEA)2 PbI4 , are investigated using ultrafast transient X-ray diffraction as a function of optical excitation fluence to discern structural dynamics. Both powder X-ray diffraction and time-resolved photoluminescence linewidths narrow over 1 ns following optical excitation for the fluence range studied, concurrent with slight redshifting of the optical bandgaps. These observations are attributed to transient relaxation and ordering of distorted lead iodide octahedra stimulated mainly by electron-hole pair creation. The c axis expands up to 0.37% over hundreds of picoseconds; reflections sampling the a and b axes undergo one tenth of this expansion with the same timescale. Post-photoexcitation appearance of the (110) reflection in (BA)2 PbI4 would suggest a transient phase transition, however, through new single-crystal XRD, reflections are found that violate glide plane conditions in the reported Pbca structure. The static structure space group is reassigned as P21 21 21 . With this, a nonequilibrium phase transition is ruled out. These findings offer increased understanding of remarkable lattice response in 2D perovskites upon excitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA