Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1860(10): 2269-78, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27130881

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by the inability of patients to sustain a high level of ventilation resulting in perceived exertional discomfort and limited exercise capacity of leg muscles at average intracellular ATP levels sufficient to support contractility. METHODS: Myosin ATPase activity in biopsy samples from healthy and COPD individuals was implemented as a local nucleotide sensor to determine ATP diffusion coefficients within myofibrils. Ergometric parameters clinically measured during maximal exercise tests in both groups were used to define the rates of myosin ATPase reaction and aerobic ATP re-synthesis. The obtained parameters in combination with AK- and CK-catalyzed reactions were implemented to compute the kinetic and steady-state spatial ATP distributions within control and COPD sarcomeres. RESULTS: The developed reaction-diffusion model of two-dimensional sarcomeric space identified similar, yet extremely low nucleotide diffusion in normal and COPD myofibrils. The corresponding spatio-temporal ATP distributions, constructed during imposed exercise, predicted in COPD sarcomeres a depletion of ATP in the zones of overlap between actin and myosin filaments along the center axis at average cytosolic ATP levels similar to healthy muscles. CONCLUSIONS: ATP-depleted zones can induce rigor tension foci impairing muscle contraction and increase a risk for sarcomere damages. Thus, intra-sarcomeric diffusion restrictions at limited aerobic ATP re-synthesis can be an additional risk factor contributing to the muscle contractile deficiency experienced by COPD patients. GENERAL SIGNIFICANCE: This study demonstrates how restricted substrate mobility within a cellular organelle can provoke an energy imbalance state paradoxically occurring at abounding average metabolic resources.


Asunto(s)
Adenosina Trifosfato/metabolismo , Miofibrillas/metabolismo , Miosinas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Anciano , Biopsia , Compartimento Celular/genética , Difusión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Miofibrillas/patología , Consumo de Oxígeno/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Sarcómeros/metabolismo , Sarcómeros/patología
2.
Biochim Biophys Acta ; 1862(6): 1159-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26976332

RESUMEN

Cardiac ischemia-reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation (OxPhos) and compartmentalized intracellular energy transfer via the phosphocreatine/creatine kinase (CK) network. The restriction of ATP/ADP diffusion at the level of the mitochondrial outer membrane (MOM) is an essential element of compartmentalized energy transfer. In adult cardiomyocytes, the MOM permeability to ADP is regulated by the interaction of voltage-dependent anion channel with cytoskeletal proteins, particularly with ß tubulin II. The IR-injury alters the expression and the intracellular arrangement of cytoskeletal proteins. The objective of the present study was to investigate the impact of IR on the intracellular arrangement of ß tubulin II and its effect on the regulation of mitochondrial respiration. Perfused rat hearts were subjected to total ischemia (for 20min (I20) and 45min (I45)) or to ischemia followed by 30min of reperfusion (I20R and I45R groups). High resolution respirometry and fluorescent confocal microscopy were used to study respiration, ß tubulin II and mitochondrial arrangements in cardiac fibers. The results of these experiments evidence a heterogeneous response of mitochondria to IR-induced damage. Moreover, the intracellular rearrangement of ß tubulin II, which in the control group colocalized with mitochondria, was associated with increased apparent affinity of OxPhos for ADP, decreased regulation of respiration by creatine without altering mitochondrial CK activity and the ratio between octameric to dimeric isoenzymes. The results of this study allow us to highlight changes of mitochondrial interactions with cytoskeleton as one of the possible mechanisms underlying cardiac IR injury.


Asunto(s)
Citoesqueleto/patología , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Tubulina (Proteína)/metabolismo , Animales , Respiración de la Célula , Citoesqueleto/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Masculino , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Ratas Wistar , Tubulina (Proteína)/ultraestructura
3.
J Bioenerg Biomembr ; 48(5): 531-548, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27854030

RESUMEN

The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.


Asunto(s)
Adenilato Quinasa/análisis , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Línea Celular Tumoral , Respiración de la Célula , Células Cultivadas , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Citosol/enzimología , Humanos , Isoenzimas/análisis , Ratones , Mitocondrias/enzimología , Ratas
4.
Amino Acids ; 48(8): 1751-74, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27318991

RESUMEN

There is an increasing body of evidence for local circuits of ATP generation and consumption that are largely independent of global cellular ATP levels. These are mostly based on the formation of multiprotein(-lipid) complexes and diffusion limitations existing in cells at different levels of organization, e.g., due to the viscosity of the cytosolic medium, macromolecular crowding, multiple and bulky intracellular structures, or controlled permeability across membranes. Enzymes generating ATP or GTP are found associated with ATPases and GTPases enabling the direct fueling of these energy-dependent processes, and thereby implying that it is the local and not the global concentration of high-energy metabolites that is functionally relevant. A paradigm for such microcompartmentation is creatine kinase (CK). Cytosolic and mitochondrial isoforms of CK constitute a well established energy buffering and shuttling system whose functions are very much based on local association of CK isoforms with ATP-providing and ATP-consuming processes. Here we review current knowledge on the subcellular localization and direct protein and lipid interactions of CK isoforms, in particular about cytosolic brain-type CK (BCK) much less is known compared to muscle-type CK (MCK). We further present novel data on BCK, based on three different experimental approaches: (1) co-purification experiments, suggesting association of BCK with membrane structures such as synaptic vesicles and mitochondria, involving hydrophobic and electrostatic interactions, respectively; (2) yeast-two-hybrid analysis using cytosolic split-protein assays and the identifying membrane proteins VAMP2, VAMP3 and JWA as putative BCK interaction partners; and (3) phosphorylation experiments, showing that the cellular energy sensor AMP-activated protein kinase (AMPK) is able to phosphorylate BCK at serine 6 to trigger BCK localization at the ER, in close vicinity of the highly energy-demanding Ca(2+) ATPase pump. Thus, membrane localization of BCK seems to be an important and regulated feature for the fueling of membrane-located, ATP-dependent processes, stressing again the importance of local rather than global ATP concentrations.


Asunto(s)
Forma BB de la Creatina-Quinasa/metabolismo , Metabolismo Energético/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Forma MM de la Creatina-Quinasa/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Citosol/enzimología , Humanos , Isoenzimas/metabolismo , Mitocondrias/enzimología , Transporte de Proteínas/fisiología
5.
Biochim Biophys Acta ; 1837(2): 232-45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24189374

RESUMEN

The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin ßII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, ßII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized ßII tubulin. Very low expression of non-polymerized form of ßII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP).


Asunto(s)
Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Músculo Estriado/metabolismo , Adenosina Difosfato/metabolismo , Animales , Western Blotting , Respiración de la Célula , Proteínas del Citoesqueleto/metabolismo , Metabolismo Energético , Masculino , Análisis de Flujos Metabólicos , Microscopía Confocal , Membranas Mitocondriales/metabolismo , Miocardio/metabolismo , Permeabilidad , Ratas , Ratas Wistar , Tubulina (Proteína)/metabolismo
7.
J Bioenerg Biomembr ; 46(5): 421-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209018

RESUMEN

Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.


Asunto(s)
Mitocondrias Musculares/metabolismo , Membranas Mitocondriales/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Unión Proteica , Canales Aniónicos Dependientes del Voltaje/metabolismo
8.
Biochim Biophys Acta ; 1818(6): 1545-54, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22244843

RESUMEN

This review describes the recent experimental data on the importance of the VDAC-cytoskeleton interactions in determining the mechanisms of energy and metabolite transfer between mitochondria and cytoplasm in cardiac cells. In the intermembrane space mitochondrial creatine kinase connects VDAC with adenine nucleotide translocase and ATP synthase complex, on the cytoplasmic side VDAC is linked to cytoskeletal proteins. Applying immunofluorescent imaging and Western blot analysis we have shown that ß2-tubulin coexpressed with mitochondria is highly important for cardiac muscle cells mitochondrial metabolism. Since it has been shown by Rostovtseva et al. that αß-heterodimer of tubulin binds to VDAC and decreases its permeability, we suppose that the ß-tubulin subunit is bound on the cytoplasmic side and α-tubulin C-terminal tail is inserted into VDAC. Other cytoskeletal proteins, such as plectin and desmin may be involved in this process. The result of VDAC-cytoskeletal interactions is selective restriction of the channel permeability for adenine nucleotides but not for creatine or phosphocreatine that favors energy transfer via the phosphocreatine pathway. In some types of cancer cells these interactions are altered favoring the hexokinase binding and thus explaining the Warburg effect of increased glycolytic lactate production in these cells. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.


Asunto(s)
Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Células Musculares/citología , Células Musculares/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Respiración de la Célula , Humanos , Mitocondrias/enzimología , Unión Proteica
9.
J Bioenerg Biomembr ; 45(4): 319-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23271420

RESUMEN

Mitochondria are dynamic structures for which fusion and fission are well characterized for rapidly dividing cells in culture. Based on these data, it has recently been proposed that high respiratory activity is the result of fusion and formation of mitochondrial reticulum, while fission results in fragmented mitochondria with low respiratory activity. In this work we test the validity of this new hypothesis by analyzing our own experimental data obtained in studies of isolated heart mitochondria, permeabilized cells of cardiac phenotype with different mitochondrial arrangement and dynamics. Additionally, we reviewed published data including electron tomographic investigation of mitochondrial membrane-associated structures in heart cells. Oxygraphic studies show that maximal ADP-dependent respiration rates are equally high both in isolated heart mitochondria and in permeabilized cardiomyocytes. On the contrary, these rates are three times lower in NB HL-1 cells with fused mitochondrial reticulum. Confocal and electron tomographic studies show that there is no mitochondrial reticulum in cardiac cells, known to contain 5,000-10,000 individual, single mitochondria, which are regularly arranged at the level of sarcomeres and are at Z-lines separated from each other by membrane structures, including the T-tubular system in close connection to the sarcoplasmic reticulum. The new structural data in the literature show a principal role for the elaborated T-tubular system in organization of cell metabolism by supplying calcium, oxygen and substrates from the extracellular medium into local domains of the cardiac cells for calcium cycling within Calcium Release Units, associated with respiration and its regulation in Intracellular Energetic Units.


Asunto(s)
Respiración de la Célula/fisiología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Metabolismo Energético , Microscopía Confocal , Dinámicas Mitocondriales , Miocitos Cardíacos/citología
10.
Biochem J ; 445(3): 333-6, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22551241

RESUMEN

The permeabilized cells and muscle fibres technique allows one to study the functional properties of mitochondria without their isolation, thus preserving all of the contacts with cellular structures, mostly the cytoskeleton, to study the whole mitochondrial population in the cell in their natural surroundings and it is increasingly being used in both experimental and clinical studies. The functional parameters (affinity for ADP in regulation of respiration) of mitochondria in permeabilized myocytes or myocardial fibres are very different from those in isolated mitochondria in vitro. In the present study, we have analysed the data showing the dependence of this parameter upon the muscle contractile state. Most remarkable is the effect of recently described Ca(2+)-independent contraction of permeabilized muscle fibres induced by elevated temperatures (30-37°C). We show that very similar strong spontaneous Ca(2+)-independent contraction can be produced by proteolytic treatment of permeabilized muscle fibres that result in a disorganization of mitochondrial arrangement, leading to a significant increase in affinity for ADP. These data show that Ca(2+)-insensitive contraction may be related to the destruction of cytoskeleton structures by intracellular proteases. Therefore the use of their inhibitors is strongly advised at the permeabilization step with careful washing of fibres or cells afterwards. A possible physiologically relevant relationship between Ca(2+)-regulated ATP-dependent contraction and mitochondrial functional parameters is also discussed.


Asunto(s)
Contracción Muscular/fisiología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Técnicas In Vitro , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Ratas
11.
J Mol Cell Cardiol ; 52(2): 437-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21846472

RESUMEN

The aim of this study was to investigate the possible role of tubulin ßII, a cytoskeletal protein, in regulation of mitochondrial oxidative phosphorylation and energy fluxes in heart cells. This isotype of tubulin is closely associated with mitochondria and co-expressed with mitochondrial creatine kinase (MtCK). It can be rapidly removed by mild proteolytic treatment of permeabilized cardiomyocytes in the absence of stimulatory effect of cytochrome c, that demonstrating the intactness of the outer mitochondrial membrane. Contrary to isolated mitochondria, in permeabilized cardiomyocytes (in situ mitochondria) the addition of pyruvate kinase (PK) and phosphoenolpyruvate (PEP) in the presence of creatine had no effect on the rate of respiration controlled by activated MtCK, showing limited permeability of voltage-dependent anion channel (VDAC) in mitochondrial outer membrane (MOM) for ADP regenerated by MtCK. Under normal conditions, this effect can be considered as one of the most sensitive tests of the intactness of cardiomyocytes and controlled permeability of MOM for adenine nucleotides. However, proteolytic treatment of permeabilized cardiomyocytes with trypsin, by removing mitochondrial ßII tubulin, induces high sensitivity of MtCK-regulated respiration to PK-PEP, significantly changes its kinetics and the affinity to exogenous ADP. MtCK coupled to ATP synthasome and to VDAC controlled by tubulin ßII provides functional compartmentation of ATP in mitochondria and energy channeling into cytoplasm via phosphotransfer network. Therefore, direct transfer of mitochondrially produced ATP to sites of its utilization is largely avoided under physiological conditions, but may occur in pathology when mitochondria are damaged. This article is part of a Special Issue entitled ''Local Signaling in Myocytes''.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo , Adenosina Difosfato/metabolismo , Animales , Respiración de la Célula , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Masculino , Microscopía Confocal , Microscopía Fluorescente , Membranas Mitocondriales/metabolismo , Consumo de Oxígeno , Transporte de Proteínas , Ratas , Ratas Wistar
12.
J Mol Cell Cardiol ; 52(2): 419-36, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21816155

RESUMEN

This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes."


Asunto(s)
Metabolismo Energético/fisiología , Miocitos Cardíacos/metabolismo , Animales , Permeabilidad de la Membrana Celular , Citoesqueleto/metabolismo , Humanos , Espacio Intracelular/metabolismo , Mitocondrias Cardíacas/metabolismo , Modelos Teóricos , Tubulina (Proteína)/metabolismo
13.
Biochim Biophys Acta ; 1807(12): 1549-61, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21872567

RESUMEN

The aim of our study was to analyze a distribution of metabolic flux controls of all mitochondrial complexes of ATP-Synthasome and mitochondrial creatine kinase (MtCK) in situ in permeabilized cardiac cells. For this we used their specific inhibitors to measure flux control coefficients (C(vi)(JATP)) in two different systems: A) direct stimulation of respiration by ADP and B) activation of respiration by coupled MtCK reaction in the presence of MgATP and creatine. In isolated mitochondria the C(vi)(JATP) were for system A: Complex I - 0.19, Complex III - 0.06, Complex IV 0.18, adenine nucleotide translocase (ANT) - 0.11, ATP synthase - 0.01, Pi carrier - 0.20, and the sum of C(vi)(JATP) was 0.75. In the presence of 10mM creatine (system B) the C(vi)(JATP) were 0.38 for ANT and 0.80 for MtCK. In the permeabilized cardiomyocytes inhibitors had to be added in much higher final concentration, and the following values of C(vi)(JATP) were determined for condition A and B, respectively: Complex I - 0.20 and 0.64, Complex III - 0.41 and 0.40, Complex IV - 0.40 and 0.49, ANT - 0.20 and 0.92, ATP synthase - 0.065 and 0.38, Pi carrier - 0.06 and 0.06, MtCK 0.95. The sum of C(vi)(JATP) was 1.33 and 3.84, respectively. Thus, C(vi)(JATP) were specifically increased under conditions B only for steps involved in ADP turnover and for Complex I in permeabilized cardiomyocytes within Mitochondrial Interactosome, a supercomplex consisting of MtCK, ATP-Synthasome, voltage dependent anion channel associated with tubulin ßII which restricts permeability of the mitochondrial outer membrane.


Asunto(s)
Respiración de la Célula/fisiología , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Antimicina A/análogos & derivados , Antimicina A/metabolismo , Atractilósido/análogos & derivados , Atractilósido/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Dinitrofluorobenceno/metabolismo , Inhibidores Enzimáticos/metabolismo , Masculino , Mersalil/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Teóricos , Miocitos Cardíacos/citología , Consumo de Oxígeno , Ratas , Ratas Wistar , Rotenona/metabolismo , Cianuro de Sodio/metabolismo , Desacopladores/metabolismo
14.
Biochim Biophys Acta ; 1807(4): 458-69, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21296049

RESUMEN

Mitochondria-cytoskeleton interactions were analyzed in adult rat cardiomyocytes and in cancerous non-beating HL-1 cells of cardiac phenotype. We show that in adult cardiomyocytes ßII-tubulin is associated with mitochondrial outer membrane (MOM). ßI-tubulin demonstrates diffused intracellular distribution, ßIII-tubulin is colocalized with Z-lines and ßIV-tubulin forms microtubular network. HL-1 cells are characterized by the absence of ßII-tubulin, by the presence of bundles of filamentous ßIV-tubulin and diffusely distributed ßI- and ßIII-tubulins. Mitochondrial isoform of creatine kinase (MtCK), highly expressed in cardiomyocytes, is absent in HL-1 cells. Our results show that high apparent K(m) for exogenous ADP in regulation of respiration and high expression of MtCK both correlate with the expression of ßII-tubulin. The absence of ßII-tubulin isotype in isolated mitochondria and in HL-1 cells results in increased apparent affinity of oxidative phosphorylation for exogenous ADP. This observation is consistent with the assumption that the binding of ßII-tubulin to mitochondria limits ADP/ATP diffusion through voltage-dependent anion channel of MOM and thus shifts energy transfer via the phosphocreatine pathway. On the other hand, absence of both ßII-tubulin and MtCK in HL-1 cells can be associated with their more glycolysis-dependent energy metabolism which is typical for cancer cells (Warburg effect).


Asunto(s)
Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Línea Celular Tumoral , Ratones
15.
Biochim Biophys Acta ; 1797(6-7): 678-97, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20096261

RESUMEN

The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.


Asunto(s)
Mitocondrias/metabolismo , Nucleótidos de Adenina/metabolismo , Animales , Respiración de la Célula , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Citoesqueleto/metabolismo , Metabolismo Energético , Retroalimentación Fisiológica , Humanos , Cinética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Fosfocreatina/metabolismo , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
16.
Int J Mol Sci ; 12(12): 9296-331, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22272134

RESUMEN

In this review we analyze the recent important and remarkable advancements in studies of compartmentation of adenine nucleotides in muscle cells due to their binding to macromolecular complexes and cellular structures, which results in non-equilibrium steady state of the creatine kinase reaction. We discuss the problems of measuring the energy fluxes between different cellular compartments and their simulation by using different computer models. Energy flux determinations by (18)O transfer method have shown that in heart about 80% of energy is carried out of mitochondrial intermembrane space into cytoplasm by phosphocreatine fluxes generated by mitochondrial creatine kinase from adenosine triphosphate (ATP), produced by ATP Synthasome. We have applied the mathematical model of compartmentalized energy transfer for analysis of experimental data on the dependence of oxygen consumption rate on heart workload in isolated working heart reported by Williamson et al. The analysis of these data show that even at the maximal workloads and respiration rates, equal to 174 µmol O(2) per min per g dry weight, phosphocreatine flux, and not ATP, carries about 80-85% percent of energy needed out of mitochondria into the cytosol. We analyze also the reasons of failures of several computer models published in the literature to correctly describe the experimental data.


Asunto(s)
Metabolismo Energético , Mitocondrias Cardíacas/metabolismo , Modelos Cardiovasculares , Miocardio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Creatina Quinasa/química , Creatina Quinasa/metabolismo , Humanos , Miocardio/citología
17.
Biochim Biophys Acta ; 1787(9): 1089-105, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19362066

RESUMEN

The main focus of this investigation is steady state kinetics of regulation of mitochondrial respiration in permeabilized cardiomyocytes in situ. Complete kinetic analysis of the regulation of respiration by mitochondrial creatine kinase was performed in the presence of pyruvate kinase and phosphoenolpyruvate to simulate interaction of mitochondria with glycolytic enzymes. Such a system analysis revealed striking differences in kinetic behaviour of the MtCK-activated mitochondrial respiration in situ and in vitro. Apparent dissociation constants of MgATP from its binary and ternary complexes with MtCK, Kia and Ka (1.94+/-0.86 mM and 2.04+/-0.14 mM, correspondingly) were increased by several orders of magnitude in situ in comparison with same constants in vitro (0.44+/-0.08 mM and 0.016+/-0.01 mM, respectively). Apparent dissociation constants of creatine, Kib and Kb (2.12+/-0.21 mM 2.17+/-0.40 Mm, correspondingly) were significantly decreased in situ in comparison with in vitro mitochondria (28+/-7 mM and 5+/-1.2 mM, respectively). Dissociation constant for phosphocreatine was not changed. These data may indicate selective restriction of metabolites' diffusion at the level of mitochondrial outer membrane. It is concluded that mechanisms of the regulation of respiration and energy fluxes in vivo are system level properties which depend on intracellular interactions of mitochondria with cytoskeleton, intracellular MgATPases and cytoplasmic glycolytic system.


Asunto(s)
Respiración de la Célula/fisiología , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Adenosina Trifosfato/farmacología , Animales , Cardiotónicos/farmacología , Cromatografía Líquida de Alta Presión , Creatina/farmacología , Activación Enzimática/efectos de los fármacos , Cinética , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Fosfocreatina/farmacología , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/metabolismo , Ratas , Ratas Wistar
18.
Am J Physiol Regul Integr Comp Physiol ; 298(4): R1075-88, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20053966

RESUMEN

Doxorubicin (DXR) belongs to the most efficient anticancer drugs. However, its clinical application is limited by the risk of severe cardiac-specific toxicity, for which an efficient treatment is missing. Underlying molecular mechanisms are not sufficiently understood so far, but nonbiased, systemic approaches can yield new clues to develop targeted therapies. Here, we applied a genome-wide transcriptome analysis to determine the early cardiac response to DXR in a model characterized earlier, that is, rat heart perfusion with 2 muM DXR, leading to only mild cardiac dysfunction. Single-gene and gene set enrichment analysis of DNA microarrays yielded robust data on cardiac transcriptional reprogramming, including novel DXR-responsive pathways. Main characteristics of transcriptional reprogramming were 1) selective upregulation of individual genes or gene sets together with widespread downregulation of gene expression; 2) repression of numerous transcripts involved in cardiac stress response and stress signaling; 3) modulation of genes with cardiac remodeling capacity; 4) upregulation of "energy-related" pathways; and 5) similarities to the transcriptional response of cancer cells. Some early responses like the induction of glycolytic and Krebs cycle genes may have compensatory function. Only minor changes in the cardiac energy status or the respiratory activity of permeabilized cardiac fibers have been observed. Other responses potentially contribute to acute and also chronic toxicity, in particular, those in stress-responsive and cardiac remodeling transcripts. We propose that a blunted response to stress and reduced "danger signaling" is a prime component of toxic DXR action and can drive cardiac cells into pathology.


Asunto(s)
Doxorrubicina/farmacología , Perfilación de la Expresión Génica , Corazón/fisiología , Transcripción Genética/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Regulación hacia Abajo/efectos de los fármacos , Glucólisis/efectos de los fármacos , Glucólisis/genética , Corazón/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno/efectos de los fármacos , Fosfocreatina/metabolismo , Reacción en Cadena de la Polimerasa , ARN/genética , ARN/aislamiento & purificación , ARN Mensajero/genética , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos
19.
Int J Mol Sci ; 11(3): 982-1019, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20479996

RESUMEN

The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.


Asunto(s)
Metabolismo Energético , Retroalimentación Fisiológica , Células Musculares/metabolismo , Animales , Humanos , Mitocondrias Musculares/metabolismo , Células Musculares/fisiología , Biología de Sistemas
20.
J Bioenerg Biomembr ; 41(3): 259-75, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19597977

RESUMEN

The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase - phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O(2) ratio equal to 5.68 +/- 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 +/- 2 microM to 330 +/- 47 microM, but creatine again decreased it to 23 +/- 6 microM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.


Asunto(s)
Metabolismo Energético/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias Cardíacas/fisiología , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula/fisiología , Cromatografía Líquida de Alta Presión , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Creatinina/metabolismo , Modelos Biológicos , Consumo de Oxígeno/fisiología , Fosfocreatina/biosíntesis , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/metabolismo , Ratas , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA