Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 566(7744): 403-406, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728499

RESUMEN

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismo
2.
Int J Cancer ; 140(2): 449-459, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27699769

RESUMEN

The PI3K-AKT-mTOR signaling cascade is activated in the majority of human cancers, and its activation also plays a key role in resistance to chemo and targeted therapeutics. In particular, in both breast and prostate cancer, increased AKT pathway activity is associated with cancer progression, treatment resistance and poor disease outcome. Here, we evaluated the activity of a novel allosteric AKT1/2 inhibitor, BAY 1125976, in biochemical, cellular mechanistic, functional and in vivo efficacy studies in a variety of tumor models. In in vitro kinase activity assays, BAY 1125976 potently and selectively inhibited the activity of full-length AKT1 and AKT2 by binding into an allosteric binding pocket formed by kinase and PH domain. In accordance with this proposed allosteric binding mode, BAY 1125976 bound to inactive AKT1 and inhibited T308 phosphorylation by PDK1, while the activity of truncated AKT proteins lacking the pleckstrin homology domain was not inhibited. In vitro, BAY 1125976 inhibited cell proliferation in a broad panel of human cancer cell lines. Particularly high activity was observed in breast and prostate cancer cell lines expressing estrogen or androgen receptors. Furthermore, BAY 1125976 exhibited strong in vivo efficacy in both cell line and patient-derived xenograft models such as the KPL4 breast cancer model (PIK3CAH1074R mutant), the MCF7 and HBCx-2 breast cancer models and the AKTE17K mutant driven prostate cancer (LAPC-4) and anal cancer (AXF 984) models. These findings indicate that BAY 1125976 is a potent and highly selective allosteric AKT1/2 inhibitor that targets tumors displaying PI3K/AKT/mTOR pathway activation, providing opportunities for the clinical development of new, effective treatments.


Asunto(s)
Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Animales , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
Mol Carcinog ; 50(1): 8-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21061267

RESUMEN

Proline rich 15 (Prr15), which encodes a protein of unknown function, is expressed almost exclusively in postmitotic cells both during fetal development and in adult tissues, such as the intestinal epithelium and the testis. To determine if this specific expression is lost in intestinal neoplasias, we examined Prr15 expression by in situ hybridization (ISH) on mouse intestinal tumors caused by different gene mutations, and on human colorectal cancer (CRC) samples. Prr15/PRR15 expression was consistently observed in mouse gastrointestinal (GI) tumors caused by mutations in the Apc gene, as well as in several advanced stage human CRCs. In contrast, no Prr15 expression was detected in intestinal tumors derived from mice carrying mutations in the Smad3, Smad4, or Cdkn1b genes. These findings, combined with the fact that a majority of sporadic human CRCs carry APC mutations, strongly suggest that the expression of Prr15/PRR15 in mouse and human GI tumors is linked, directly or indirectly, to the absence of the APC protein or, more generally, to the disruption of the Wnt signaling pathway.


Asunto(s)
Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma/metabolismo , Neoplasias Gastrointestinales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Adenocarcinoma/patología , Adenocarcinoma Mucinoso/patología , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Northern Blotting , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Femenino , Neoplasias Gastrointestinales/patología , Humanos , Técnicas para Inmunoenzimas , Hibridación in Situ , Metástasis Linfática , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mutación/genética , Hibridación de Ácido Nucleico , Prolina/genética , Proteínas/genética , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Transducción de Señal , Proteína smad3/fisiología , Proteína Smad4/fisiología
4.
Cell Oncol (Dordr) ; 44(3): 581-594, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33492659

RESUMEN

PURPOSE: 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS: High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS: We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS: The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias de la Próstata , Línea Celular Tumoral , Humanos , Masculino , Transducción de Señal/efectos de los fármacos
5.
Mol Cancer Ther ; 17(11): 2285-2296, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30115664

RESUMEN

The lactate transporter SLC16A1/monocarboxylate transporter 1 (MCT1) plays a central role in tumor cell energy homeostasis. In a cell-based screen, we identified a novel class of MCT1 inhibitors, including BAY-8002, which potently suppress bidirectional lactate transport. We investigated the antiproliferative activity of BAY-8002 in a panel of 246 cancer cell lines and show that hematopoietic tumor cells, in particular diffuse large B-cell lymphoma cell lines, and subsets of solid tumor models are particularly sensitive to MCT1 inhibition. Associated markers of sensitivity were, among others, lack of MCT4 expression, low pleckstrin homology like domain family A member 2, and high pellino E3 ubiquitin protein ligase 1 expression. The antitumor effect of MCT1 inhibition was less pronounced on tumor xenografts, with tumor stasis being the maximal response. BAY-8002 significantly increased intratumor lactate levels and transiently modulated pyruvate levels. In order to address potential acquired resistance mechanisms to MCT1 inhibition, we generated MCT1 inhibitor-resistant cell lines and show that resistance can occur by upregulation of MCT4 even in the presence of sufficient oxygen, as well as by shifting energy generation toward oxidative phosphorylation. These findings provide insight into novel aspects of tumor response to MCT1 modulation and offer further rationale for patient selection in the clinical development of MCT1 inhibitors. Mol Cancer Ther; 17(11); 2285-96. ©2018 AACR.


Asunto(s)
Aminobenzoatos/farmacología , Benzoatos/farmacología , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Sulfonas/farmacología , Simportadores/antagonistas & inhibidores , Aminobenzoatos/química , Animales , Benzoatos/química , Transporte Biológico/efectos de los fármacos , Radioisótopos de Carbono , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Ratones SCID , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Pirimidinonas/farmacología , Ácido Pirúvico/metabolismo , Sulfonas/química , Simportadores/metabolismo , Tiofenos/farmacología , Resultado del Tratamiento , Xenopus laevis
6.
PLoS One ; 11(8): e0160658, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494181

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries and overall 5-year survival rates of less than 5%. The most frequent mutations in PDAC are gain-of-function mutations in KRAS as well as loss-of-function mutations in p53. Both mutations have severe impacts on the metabolism of tumor cells. Many of these metabolic changes are mediated by transporters or channels that regulate the exchange of metabolites and ions between the intracellular compartment and the tumor microenvironment. In the study presented here, our goal was to identify novel transporters or channels that regulate oxidative phosphorylation (OxPhos) in PDAC in order to characterize novel potential drug targets for the treatment of these cancers. We set up a Seahorse Analyzer XF based siRNA screen and identified previously described as well as novel regulators of OxPhos. The siRNA that resulted in the greatest change in cellular oxygen consumption was targeting the KCNN4 gene, which encodes for the Ca2+-sensitive K+ channel KCa3.1. This channel has not previously been reported to regulate OxPhos. Knock-down experiments as well as the use of a small molecule inhibitor confirmed its role in regulating oxygen consumption, ATP production and cellular proliferation. Furthermore, PDAC cell lines sensitive to KCa3.1 inhibition were shown to express the channel protein in the plasma membrane as well as in the mitochondria. These differences in the localization of KCa3.1 channels as well as differences in the regulation of cellular metabolism might offer opportunities for targeted therapy in subsets of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Fosforilación Oxidativa , Neoplasias Pancreáticas/patología , Apoptosis , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Humanos , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
7.
Cancer Metab ; 3: 11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500770

RESUMEN

BACKGROUND: Numerous studies have demonstrated that functional mitochondria are required for tumorigenesis, suggesting that mitochondrial oxidative phosphorylation (OXPHOS) might be a potential target for cancer therapy. In this study, we investigated the effects of BAY 87-2243, a small molecule that inhibits the first OXPHOS enzyme (complex I), in melanoma in vitro and in vivo. RESULTS: BAY 87-2243 decreased mitochondrial oxygen consumption and induced partial depolarization of the mitochondrial membrane potential. This was associated with increased reactive oxygen species (ROS) levels, lowering of total cellular ATP levels, activation of AMP-activated protein kinase (AMPK), and reduced cell viability. The latter was rescued by the antioxidant vitamin E and high extracellular glucose levels (25 mM), indicating the involvement of ROS-induced cell death and a dependence on glycolysis for cell survival upon BAY 87-2243 treatment. BAY 87-2243 significantly reduced tumor growth in various BRAF mutant melanoma mouse xenografts and patient-derived melanoma mouse models. Furthermore, we provide evidence that inhibition of mutated BRAF using the specific small molecule inhibitor vemurafenib increased the OXPHOS dependency of BRAF mutant melanoma cells. As a consequence, the combination of both inhibitors augmented the anti-tumor effect of BAY 87-2243 in a BRAF mutant melanoma mouse xenograft model. CONCLUSIONS: Taken together, our results suggest that complex I inhibition has potential clinical applications as a single agent in melanoma and also might be efficacious in combination with BRAF inhibitors in the treatment of patients with BRAF mutant melanoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA