Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(4): e1009395, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793571

RESUMEN

Histiocytic sarcoma (HS) is a rare but aggressive cancer in both humans and dogs. The spontaneous canine model, which has clinical, epidemiological, and histological similarities with human HS and specific breed predispositions, provides a unique opportunity to unravel the genetic basis of this cancer. In this study, we aimed to identify germline risk factors associated with the development of HS in canine-predisposed breeds. We used a methodology that combined several genome-wide association studies in a multi-breed and multi-cancer approach as well as targeted next-generation sequencing, and imputation We combined several dog breeds (Bernese mountain dogs, Rottweilers, flat-coated retrievers, and golden retrievers), and three hematopoietic cancers (HS, lymphoma, and mast cell tumor). Results showed that we not only refined the previously identified HS risk CDKN2A locus, but also identified new loci on canine chromosomes 2, 5, 14, and 20. Capture and targeted sequencing of specific loci suggested the existence of regulatory variants in non-coding regions and methylation mechanisms linked to risk haplotypes, which lead to strong cancer predisposition in specific dog breeds. We also showed that these canine cancer predisposing loci appeared to be due to the additive effect of several risk haplotypes involved in other hematopoietic cancers such as lymphoma or mast cell tumors as well. This illustrates the pleiotropic nature of these canine cancer loci as observed in human oncology, thereby reinforcing the interest of predisposed dog breeds to study cancer initiation and progression.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Enfermedades de los Perros/genética , Predisposición Genética a la Enfermedad , Neoplasias Hematológicas/genética , Sarcoma Histiocítico/genética , Animales , Mapeo Cromosómico , Enfermedades de los Perros/patología , Perros , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/veterinaria , Secuenciación de Nucleótidos de Alto Rendimiento , Sarcoma Histiocítico/patología , Humanos
2.
Int J Cancer ; 147(6): 1657-1665, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32212266

RESUMEN

In humans, histiocytic sarcoma (HS) is an aggressive cancer involving histiocytes. Its rarity and heterogeneity explain that treatment remains a challenge. Sharing high clinical and histopathological similarities with human HS, the canine HS is conversely frequent in specific breeds and thus constitutes a unique spontaneous model for human HS to decipher the genetic bases and to explore therapeutic options. We identified sequence alterations in the MAPK pathway in at least 63.9% (71/111) of HS cases with mutually exclusive BRAF (0.9%; 1/111), KRAS (7.2%; 8/111) and PTPN11 (56.75%; 63/111) mutations concentrated at hotspots common to human cancers. Recurrent PTPN11 mutations are associated to visceral disseminated HS subtype in dogs, the most aggressive clinical presentation. We then identified PTPN11 mutations in 3/19 (15.7%) human HS patients. Thus, we propose PTPN11 mutations as key events for a specific subset of human and canine HS: the visceral disseminated form. Finally, by testing drugs targeting the MAPK pathway in eight canine HS cell lines, we identified a better anti-proliferation activity of MEK inhibitors than PTPN11 inhibitors in canine HS neoplastic cells. In combination, these results illustrate the relevance of naturally affected dogs in deciphering genetic mechanisms and selecting efficient targeted therapies for such rare and aggressive cancers in humans.


Asunto(s)
Enfermedades de los Perros/genética , Histiocitos/patología , Sarcoma Histiocítico/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biopsia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Niño , Preescolar , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Enfermedades de los Perros/sangre , Enfermedades de los Perros/patología , Perros , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Sarcoma Histiocítico/tratamiento farmacológico , Sarcoma Histiocítico/patología , Sarcoma Histiocítico/veterinaria , Humanos , Lactante , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Ribonucleasas , Proteínas Supresoras de Tumor , Adulto Joven
3.
Hum Genet ; 138(5): 455-466, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30955094

RESUMEN

In humans, hereditary sensory neuropathies (HSN), also known as hereditary sensory and autonomic neuropathies (HSAN), constitute a clinically and genetically heterogeneous group of disorders characterized by progressive sensory loss, often accompanied by chronic skin ulcerations and nail dystrophic changes. To date, although around 20 genes have already been discovered, they do not explain the genetic causes of all patients. In dogs, similar neuropathies are also diagnosed, several breeds being predisposed to specific forms of the disease. Indeed, the breed specificity of most canine genetic diseases is due to the small numbers of founders and high levels of inbreeding. Recent knowledge and tools developed to study the canine genome efficiently allows deciphering the genetic bases of such diseases. To date, a dozen breeds are recognized to develop specific HSN. For the Border collie and hunting dog breeds, the genes involved have recently been discovered. Other affected breeds thus constitute potential genetic models, with new genes to be found in dogs that can be considered as candidate genes for human HSAN/HSN. Here, we review the different forms of human and canine HSAN/HSN and we present a novel form in Fox terrier cases, highlighting the advantages of the dog model for such rare human diseases.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/veterinaria , Animales , Modelos Animales de Enfermedad , Perros , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Endogamia , Masculino
4.
Nucleic Acids Res ; 45(8): e57, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28053114

RESUMEN

Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc.


Asunto(s)
Genoma , Anotación de Secuencia Molecular/métodos , ARN Largo no Codificante/genética , Programas Informáticos , Transcriptoma , Animales , Benchmarking , Árboles de Decisión , Perros , Regulación de la Expresión Génica , Humanos , Ratones , Anotación de Secuencia Molecular/estadística & datos numéricos , Sistemas de Lectura Abierta , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , ARN Mensajero/clasificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
5.
PLoS Genet ; 12(12): e1006482, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28033318

RESUMEN

Human Hereditary Sensory Autonomic Neuropathies (HSANs) are characterized by insensitivity to pain, sometimes combined with self-mutilation. Strikingly, several sporting dog breeds are particularly affected by such neuropathies. Clinical signs appear in young puppies and consist of acral analgesia, with or without sudden intense licking, biting and severe self-mutilation of the feet, whereas proprioception, motor abilities and spinal reflexes remain intact. Through a Genome Wide Association Study (GWAS) with 24 affected and 30 unaffected sporting dogs using the Canine HD 170K SNP array (Illumina), we identified a 1.8 Mb homozygous locus on canine chromosome 4 (adj. p-val = 2.5x10-6). Targeted high-throughput sequencing of this locus in 4 affected and 4 unaffected dogs identified 478 variants. Only one variant perfectly segregated with the expected recessive inheritance in 300 sporting dogs of known clinical status, while it was never present in 900 unaffected dogs from 130 other breeds. This variant, located 90 kb upstream of the GDNF gene, a highly relevant neurotrophic factor candidate gene, lies in a long intergenic non-coding RNAs (lincRNA), GDNF-AS. Using human comparative genomic analysis, we observed that the canine variant maps onto an enhancer element. Quantitative RT-PCR of dorsal root ganglia RNAs of affected dogs showed a significant decrease of both GDNF mRNA and GDNF-AS expression levels (respectively 60% and 80%), as compared to unaffected dogs. We thus performed gel shift assays (EMSA) that reveal that the canine variant significantly alters the binding of regulatory elements. Altogether, these results allowed the identification in dogs of GDNF as a relevant candidate for human HSAN and insensitivity to pain, but also shed light on the regulation of GDNF transcription. Finally, such results allow proposing these sporting dog breeds as natural models for clinical trials with a double benefit for human and veterinary medicine.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Insensibilidad Congénita al Dolor/genética , Dolor/genética , ARN Largo no Codificante/genética , Animales , Mapeo Cromosómico , Perros , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Humanos , Dolor/fisiopatología , Insensibilidad Congénita al Dolor/fisiopatología , Mutación Puntual , Polimorfismo de Nucleótido Simple
6.
BMC Cancer ; 18(1): 1219, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514258

RESUMEN

BACKGROUND: Metastatic melanoma is one of the most aggressive forms of cancer in humans. Among its types, mucosal melanomas represent one of the most highly metastatic and aggressive forms, with a very poor prognosis. Because they are rare in Caucasian individuals, unlike cutaneous melanomas, there has been fewer epidemiological, clinical and genetic evaluation of mucosal melanomas. Moreover, the lack of predictive models fully reproducing the pathogenesis and molecular alterations of mucosal melanoma makes its treatment challenging. Interestingly, dogs are frequently affected by melanomas of the oral cavity that are characterized, as their human counterparts, by focal infiltration, recurrence, and metastasis to regional lymph nodes, lungs and other organs. In dogs, some particular breeds are at high risk, suggesting a specific genetic background and strong genetic drivers. Altogether, the striking homologies in clinical presentation, histopathological features, and overall biology between human and canine mucosal melanomas make dogs invaluable natural models with which to investigate tumor development, including tumor ætiology, and develop tailored treatments. METHODS: We developed and characterized two canine oral melanoma cell lines from tumors isolated from dog patients with distinct clinical profiles; with and without lung metastases. The cells were characterized using immunohistochemistry, pharmacology and genetic studies. RESULTS: We have developed and immunohistochemically, genetically, and pharmacologically characterized. Two cell lines (Ocr_OCMM1X & Ocr_OCMM2X) were produced through mouse xenografts originating from two clinically contrasting melanomas of the oral cavity. Their exhaustive characterization showed two distinct biological and genetic profiles that are potentially linked to the stage of malignancy at the time of diagnosis and sample collection of each melanoma case. These cell lines thus constitute relevant tools with which to perform genetic and drug screening analyses for a better understanding of mucosal melanomas in dogs and humans. CONCLUSIONS: The aim of this study was to establish and characterize xenograft-derived canine melanoma cell lines with different morphologies, genetic features and pharmacological sensitivities that constitute good predictive models for comparative oncology. These cell lines are relevant tools to advance the use of canine mucosal melanomas as natural models for the benefit of both veterinary and human medicine.


Asunto(s)
Melanoma/diagnóstico por imagen , Melanoma/genética , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/genética , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Perros , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Melanoma/tratamiento farmacológico , Ratones , Ratones Desnudos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Melanoma Cutáneo Maligno
7.
Proc Natl Acad Sci U S A ; 107(33): 14775-80, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20679209

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs) represent the most common group of inherited progressive encephalopathies in children. They are characterized by progressive loss of vision, mental and motor deterioration, epileptic seizures, and premature death. Rare adult forms of NCL with late onset are known as Kufs' disease. Loci underlying these adult forms remain unknown due to the small number of patients and genetic heterogeneity. Here we confirm that a late-onset form of NCL recessively segregates in US and French pedigrees of American Staffordshire Terrier (AST) dogs. Through combined association, linkage, and haplotype analyses, we mapped the disease locus to a single region of canine chromosome 9. We eventually identified a worldwide breed-specific variant in exon 2 of the Arylsulfatase G (ARSG) gene, which causes a p.R99H substitution in the vicinity of the catalytic domain of the enzyme. In transfected cells or leukocytes from affected dogs, the missense change leads to a 75% decrease in sulfatase activity, providing a functional confirmation that the variant might be the NCL-causing mutation. Our results uncover a protein involved in neuronal homeostasis, identify a family of candidate genes to be screened in patients with Kufs' disease, and suggest that a deficiency in sulfatase is part of the NCL pathogenesis.


Asunto(s)
Arilsulfatasas/genética , Enfermedades de los Perros/genética , Mutación Missense , Lipofuscinosis Ceroideas Neuronales/veterinaria , Transportadoras de Casetes de Unión a ATP/genética , Factores de Edad , Animales , Arilsulfatasas/deficiencia , Dominio Catalítico/genética , Línea Celular , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/patología , Corteza Cerebelosa/ultraestructura , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Enfermedades de los Perros/enzimología , Perros , Femenino , Perfilación de la Expresión Génica , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Masculino , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Genes (Basel) ; 14(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36980922

RESUMEN

Bernese mountain dogs are a large dog breed formed in the early 1900s in Switzerland. While originally farm dogs that were used for pulling carts, guarding, and driving cattle, today they are considered multi-purpose companion and family dogs. The breed is predisposed to several complex diseases, such as histiocytic sarcoma, degenerative myelopathy, or hip dysplasia. Using whole-genome sequencing (WGS) data, we assessed the genomic architecture of 33 unrelated dogs from four countries: France, Sweden, Switzerland, and the United States. Analysis of runs of homozygosity (ROH) identified 12,643 ROH with an average length of 2.29 Mb and an average inbreeding coefficient of 0.395. Multidimensional scaling analysis of the genetic relatedness revealed limited clustering of European versus USA dogs, suggesting exchanges of breeding stock between continents. Furthermore, only two mtDNA haplotypes were detected in the 33 studied dogs, both of which are widespread throughout multiple dog breeds. WGS-based ROH analyses revealed several fixed or nearly fixed regions harboring discreet morphological trait-associated as well as disease-associated genetic variants. Several genes involved in the regulation of immune cells were found in the ROH shared by all dogs, which is notable in the context of the breed's strong predisposition to hematopoietic cancers. High levels of inbreeding and relatedness, strongly exaggerated in the last 30 years, have likely led to the high prevalence of specific genetic disorders in this breed.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Perros , Animales , Bovinos , Homocigoto , Genoma/genética , Genotipo , Genómica/métodos
9.
Cancers (Basel) ; 14(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35053440

RESUMEN

Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.

10.
BMC Cancer ; 11: 201, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21615919

RESUMEN

BACKGROUND: Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS) is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs) that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. METHODS: Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. RESULTS: Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. CONCLUSIONS: The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model for the human counterpart, providing additional evidence towards elucidation of the pathophysiological and genetic mechanisms associated with histiocytic malignancies. Extrapolation of data derived from canine histiocytic disorders to human histiocytic proliferation may help to further our understanding of the propagation and cancerization of histiocytic cells, contributing to development of new and effective therapeutic modalities for both species.


Asunto(s)
Modelos Animales de Enfermedad , Eliminación de Gen , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad/genética , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/fisiopatología , Animales , Hibridación Genómica Comparativa , Análisis Citogenético , Variaciones en el Número de Copia de ADN/genética , Perros , Femenino , Genes p16 , Masculino , Fosfohidrolasa PTEN/genética , Penetrancia
11.
Sci Rep ; 11(1): 877, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441840

RESUMEN

Circulating tumor DNA (ctDNA) has become an attractive biomarker in human oncology, and its use may be informative in canine cancer. Thus, we used droplet digital PCR or PCR for antigen receptor rearrangement, to explore tumor-specific point mutations, copy number alterations, and chromosomal rearrangements in the plasma of cancer-affected dogs. We detected ctDNA in 21/23 (91.3%) of histiocytic sarcoma (HS), 2/8 (25%) of oral melanoma, and 12/13 (92.3%) of lymphoma cases. The utility of ctDNA in diagnosing HS was explored in 133 dogs, including 49 with HS, and the screening of recurrent PTPN11 mutations in plasma had a specificity of 98.8% and a sensitivity between 42.8 and 77% according to the clinical presentation of HS. Sensitivity was greater in visceral forms and especially related to pulmonary location. Follow-up of four dogs by targeting lymphoma-specific antigen receptor rearrangement in plasma showed that minimal residual disease detection was concordant with clinical evaluation and treatment response. Thus, our study shows that ctDNA is detectable in the plasma of cancer-affected dogs and is a promising biomarker for diagnosis and clinical follow-up. ctDNA detection appears to be useful in comparative oncology research due to growing interest in the study of natural canine tumors and exploration of new therapies.


Asunto(s)
ADN Tumoral Circulante/sangre , Enfermedades de los Perros/sangre , Enfermedades de los Perros/genética , Sarcoma Histiocítico/veterinaria , Melanoma/veterinaria , Neoplasias de la Boca/veterinaria , Animales , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Variaciones en el Número de Copia de ADN , Enfermedades de los Perros/diagnóstico , Perros , Femenino , Sarcoma Histiocítico/sangre , Sarcoma Histiocítico/diagnóstico , Sarcoma Histiocítico/genética , Linfoma/diagnóstico , Linfoma/genética , Linfoma/veterinaria , Masculino , Melanoma/diagnóstico , Melanoma/genética , Neoplasias de la Boca/sangre , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/análisis , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sensibilidad y Especificidad
12.
Vet Comp Oncol ; 18(2): 214-223, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31461207

RESUMEN

Canine oral melanoma is the first malignancy of the oral cavity in dogs and is characterized by a local invasiveness and a high metastatic propensity. A better knowledge of genetic alterations is expected to improve management of this tumour. Copy number alterations are known characteristics of mucosal melanomas both in dogs and humans. The goal of this study was to explore the prognostic value of somatic focal amplifications on chromosomes (Canis Familiaris [CFA]) 10 and 30 in canine oral melanoma. The cohort included 73 dogs with oral melanoma confirmed by histology, removed surgically without adjuvant therapy and with a minimal follow-up of 6 months. Epidemiological, clinical and histological data were collected and quantitative-PCR were performed on formalin-fixed paraffin-embedded (FFPE) samples to identify specific focal amplifications. The 73 dogs included in the study had a median survival time of 220 days. Focal amplifications on CFA 10 and 30 were recurrent (49.3% and 50.7% of cases, respectively) and CFA 30 amplification was significantly associated with the amelanotic phenotype (P = .046) and high mitotic index (MI; P = .0039). CFA 30 amplification was also linked to poor prognosis (P = .0005). Other negative prognostic factors included gingiva location (P = .003), lymphadenomegaly (P = .026), tumour ulceration at diagnosis (P = .003), MI superior to 6 mitoses over 10 fields (P = .001) and amelanotic tumour (P = .029). In multivariate analyses using Cox proportional hazards regression, CFA 30 amplification (Hazard ratio [HR] = 2.08; P = .011), tumour location (HR = 2.20; P = .005) and histological pigmentation (HR = 1.87; P = .036) were significantly associated with shorter survival time. Focal amplification of CFA 30 is linked to an aggressive subset and constitutes a new prognostic factor.


Asunto(s)
Aberraciones Cromosómicas/veterinaria , Enfermedades de los Perros/genética , Melanoma/veterinaria , Neoplasias de la Boca/veterinaria , Animales , Perros , Femenino , Predisposición Genética a la Enfermedad , Masculino , Melanoma/genética , Índice Mitótico , Neoplasias de la Boca/genética , Pronóstico
13.
J Hered ; 100(2): 236-40, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18854372

RESUMEN

Dogs differ greatly in their morphological characteristics including various tail phenotypes. Congenitally short-tailed dogs are present in many breeds; however, the causative mutation located in the T-box transcription factor T gene (C189G) had only been described in the bobtailed Pembroke Welsh Corgis. We investigated here the presence of the T gene mutation in 23 other breeds (360 dogs, including 156 natural short tailed) in which natural bobtailed dogs exist. In the 17 breeds in which the C189G mutation was observed, there was a perfect correlation between this mutation and the short-tail phenotype. However, 6 breeds did not carry the known substitution or any other mutations in the T gene coding regions. No dogs were found to be homozygous for the C189G mutation, suggesting that the homozygous condition is lethal. In order to study the effect of the T gene mutation on litter size, we compared the number of puppies born from short-tailed parents to that born from long-tailed parents. In the Swedish Vallhund breed, we observed a 29% decrease in the litter size when both parents were short tailed. Given that the T gene mutation is not present in all breeds of short-tailed dog, there must be yet other genetic factors affecting tail phenotypes to be discovered.


Asunto(s)
Cruzamiento , Mutación , Proteínas de Dominio T Box/genética , Cola (estructura animal)/anatomía & histología , Animales , Cruzamientos Genéticos , Perros , Evolución Molecular , Femenino , Tamaño de la Camada/genética , Mutación/fisiología , Fenotipo , Filogenia , Embarazo
14.
J Hered ; 100 Suppl 1: S19-27, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19531730

RESUMEN

Histiocytic sarcoma (HS) refers to a highly aggressive and frequently disseminated neoplastic disease belonging to the class of canine histiocytic proliferative disorders. Disseminated HS (previously called malignant histiocytosis) is highly breed specific, with Bernese mountain dogs (BMDs), rottweilers, and retrievers having a high prevalence with a frequency of approximately 25% in the BMD breed. We collected DNA samples and clinical information from 800 BMDs, of which 200 are affected by HS. To better characterize the physiopathology and epidemiology, an in-depth analysis of 89 BMD cases has been performed. The mean age of onset was 6.5 years, males and females being equally affected. The clinical features, biochemical parameters, and pathological features have been determined. The life span after diagnosis has been estimated to be 49 days. A large BMD pedigree of 327 dogs, 121 of which are affected, was assembled. Using a subset of 160 BMDs, encompassing 21 complete sibships, we now propose an oligogenic transmission mode of the disease. Whole-genome linkage scans as well as association studies using a case/control analysis, in parallel with expression profiling of neoplastic versus normal histiocytes, are all underway. Altogether, these complementary approaches are expected to localize the genes for HS in the BMD, leading to advances in our knowledge of histiocyte diseases in dogs and humans.


Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/genética , Sarcoma Histiocítico/veterinaria , Animales , Enfermedades de los Perros/patología , Perros , Femenino , Sarcoma Histiocítico/epidemiología , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/patología , Masculino , Linaje
15.
Genes (Basel) ; 10(5)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117290

RESUMEN

White coat color in mammals has been selected several times during the domestication process. Numerous dog breeds are fixed for one form of white coat color that involves darkly pigmented skin. The genetic basis of this color, due to the absence of pigment in the hairs, was suggested to correspond to extreme dilution of the phaeomelanin, by both the expression of only phaeomelanin (locus E) and its extreme dilution (locus I). To go further, we performed genome-wide association studies (GWAS) using a multiple breed approach. The first GWAS, using 34 white dogs and 128 non-white dogs, including White Shepherds, Poodles, Cotons de Tulear and Bichons allowed us to identify two significantly associated loci on the locus E and a novel locus on chromosome 20. A second GWAS using 15 other breeds presenting extreme phaeomelanin dilution confirmed the position of locus I on the chromosome 20 (position 55 Mb pcorrected = 6 × 10-13). Using whole-genome sequencing, we identified a missense variant in the first exon of MFSD12, a gene recently identified to be involved in human, mouse and horse pigmentation. We confirmed the role of this variant in phaeomelanin dilution of numerous canine breeds, and the conserved role of MFSD12 in mammalian pigmentation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Melaninas/genética , Proteínas de la Membrana/genética , Pigmentación de la Piel/genética , Animales , Perros , Caballos/genética , Ratones , Mutación Missense
16.
Genes (Basel) ; 10(6)2019 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-31234577

RESUMEN

Mucosal melanomas (MM) are rare aggressive cancers in humans, and one of the most common forms of oral cancers in dogs. Similar biological and histological features are shared between MM in both species, making dogs a powerful model for comparative oncology studies of melanomas. Although exome sequencing recently identified recurrent coding mutations in canine MM, little is known about changes in non-coding gene expression, and more particularly, in canine long non-coding RNAs (lncRNAs), which are commonly dysregulated in human cancers. Here, we sampled a large cohort (n = 52) of canine normal/tumor oral MM from three predisposed breeds (poodles, Labrador retrievers, and golden retrievers), and used deep transcriptome sequencing to identify more than 400 differentially expressed (DE) lncRNAs. We further prioritized candidate lncRNAs by comparative genomic analysis to pinpoint 26 dog-human conserved DE lncRNAs, including SOX21-AS, ZEB2-AS, and CASC15 lncRNAs. Using unsupervised co-expression network analysis with coding genes, we inferred the potential functions of the DE lncRNAs, suggesting associations with cancer-related genes, cell cycle, and carbohydrate metabolism Gene Ontology (GO) terms. Finally, we exploited our multi-breed design to identify DE lncRNAs within breeds. This study provides a unique transcriptomic resource for studying oral melanoma in dogs, and highlights lncRNAs that may potentially be diagnostic or therapeutic targets for human and veterinary medicine.


Asunto(s)
Enfermedades de los Perros/genética , Melanoma/genética , Neoplasias de la Boca/genética , ARN Largo no Codificante/genética , Animales , Cruzamiento , Enfermedades de los Perros/patología , Perros , Perfilación de la Expresión Génica , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Melanoma/patología , Neoplasias de la Boca/patología , Transcriptoma/genética
17.
BMC Vet Res ; 4: 10, 2008 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-18315866

RESUMEN

BACKGROUND: Several forms of progressive retinal atrophy (PRA) segregate in more than 100 breeds of dog with each PRA segregating in one or a few breeds. This breed specificity may be accounted for by founder effects and genetic drift, which have reduced the genetic heterogeneity of each breed, thereby facilitating the identification of causal mutations. We report here a new form of PRA segregating in the Border Collie breed. The clinical signs, including the loss of night vision and a progressive loss of day vision, resulting in complete blindness, occur at the age of three to four years and may be detected earlier through systematic ocular fundus examination and electroretinography (ERG). RESULTS: Ophthalmic examinations performed on 487 dogs showed that affected dogs present a classical form of PRA. Of those, 274 have been sampled for DNA extraction and 87 could be connected through a large pedigree. Segregation analysis suggested an X-linked mode of transmission; therefore both XLPRA1 and XLPRA2 mutations were excluded through the genetic tests. CONCLUSION: Having excluded these mutations, we suggest that this PRA segregating in Border Collie is a new XLPRA (XLPRA3) and propose it as a potential model for the homologous human disease, X-Linked Retinitis Pigmentosa.


Asunto(s)
Enfermedades de los Perros/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Enfermedades de la Retina/veterinaria , Animales , Enfermedades de los Perros/metabolismo , Perros , Femenino , Genes Ligados a X , Predisposición Genética a la Enfermedad , Masculino , Mutación , Linaje , Enfermedades de la Retina/genética
18.
Sci Rep ; 8(1): 13444, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194329

RESUMEN

Long non-coding RNAs (lncRNAs) are a family of heterogeneous RNAs that play major roles in multiple biological processes. We recently identified an extended repertoire of more than 10,000 lncRNAs of the domestic dog however, predicting their biological functionality remains challenging. In this study, we have characterised the expression profiles of 10,444 canine lncRNAs in 26 distinct tissue types, representing various anatomical systems. We showed that lncRNA expressions are mainly clustered by tissue type and we highlighted that 44% of canine lncRNAs are expressed in a tissue-specific manner. We further demonstrated that tissue-specificity correlates with specific families of canine transposable elements. In addition, we identified more than 900 conserved dog-human lncRNAs for which we show their overall reproducible expression patterns between dog and human through comparative transcriptomics. Finally, co-expression analyses of lncRNA and neighbouring protein-coding genes identified more than 3,400 canine lncRNAs, suggesting that functional roles of these lncRNAs act as regulatory elements. Altogether, this genomic and transcriptomic integrative study of lncRNAs constitutes a major resource to investigate genotype to phenotype relationships and biomedical research in the dog species.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica/fisiología , ARN Largo no Codificante/biosíntesis , Transcriptoma , Animales , Perros , Humanos , Especificidad de Órganos , ARN Largo no Codificante/genética
19.
Cell Transplant ; 27(7): 1096-1110, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29871519

RESUMEN

Growing demonstrations of regenerative potential for some stem cells led recently to promising therapeutic proposals for neuromuscular diseases. We have shown that allogeneic MuStem cell transplantation into Golden Retriever muscular dystrophy (GRMD) dogs under continuous immunosuppression (IS) leads to persistent clinical stabilization and muscle repair. However, long-term IS in medical practice is associated with adverse effects raising safety concerns. Here, we investigate whether the IS removal or its restriction to the transplantation period could be considered. Dogs aged 4-5 months old received vascular infusions of allogeneic MuStem cells without IS (GRMDMU/no-IS) or under transient IS (GRMDMU/tr-IS). At 5 months post-infusion, persisting clinical status improvement of the GRMDMU/tr-IS dogs was observed while GRMDMU/no-IS dogs exhibited no benefit. Histologically, only 9-month-old GRMDMU/tr-IS dogs showed an increased muscle regenerative activity. A mixed cell reaction with the host peripheral blood mononucleated cells (PBMCs) and corresponding donor cells revealed undetectable to weak lymphocyte proliferation in GRMDMU/tr-IS dogs compared with a significant proliferation in GRMDMU/no-IS dogs. Importantly, any dog group showed neither cellular nor humoral anti-dystrophin responses. Our results show that transient IS is necessary and sufficient to sustain allogeneic MuStem cell transplantation benefits and prevent host immunity. These findings provide useful critical insight to designing therapeutic strategies.


Asunto(s)
Enfermedades de los Perros/terapia , Terapia de Inmunosupresión/métodos , Distrofia Muscular Animal/terapia , Trasplante de Células Madre/métodos , Células Alogénicas/inmunología , Animales , Perros , Distrofina/inmunología , Masculino , Distrofia Muscular Animal/inmunología , Células Madre/citología , Células Madre/inmunología , Trasplante Homólogo/métodos
20.
Sci Rep ; 7(1): 15680, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142306

RESUMEN

Genome-wide association studies (GWAS) are widely used to identify loci associated with phenotypic traits in the domestic dog that has emerged as a model for Mendelian and complex traits. However, a disadvantage of GWAS is that it always requires subsequent fine-mapping or sequencing to pinpoint causal mutations. Here, we performed whole exome sequencing (WES) and canine high-density (cHD) SNP genotyping of 28 dogs from 3 breeds to compare the SNP and linkage disequilibrium characteristics together with the power and mapping precision of exome-guided GWAS (EG-GWAS) versus cHD-based GWAS. Using simulated phenotypes, we showed that EG-GWAS has a higher power than cHD to detect associations within target regions and less power outside target regions, with power being influenced further by sample size and SNP density. We analyzed two real phenotypes (hair length and furnishing), that are fixed in certain breeds to characterize mapping precision of the known causal mutations. EG-GWAS identified the associated exonic and 3'UTR variants within the FGF5 and RSPO2 genes, respectively, with only a few samples per breed. In conclusion, we demonstrated that EG-GWAS can identify loci associated with Mendelian phenotypes both within and across breeds.


Asunto(s)
Cruzamiento , Secuenciación del Exoma , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Sitios de Carácter Cuantitativo/genética , Animales , Mapeo Cromosómico , Perros , Exoma/genética , Genotipo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA